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Abstract: Here we consider theoretically an exciton-like dipole formed by a magnetic monopole and
a magnetic antimonopole. This type of quasiparticles may be formed in a magnetic counterpart of
a one dimensional semiconductor crystal. We use the familiar Lorentz driven damped harmonic
oscillator model to find the eigenmodes of magnetic monopole dipoles strongly coupled to light. The
proposed model allows predicting optical signatures of magnetic monopole excitons in crystals.
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1. Introduction

The quantum mechanical prediction of magnetic monopoles was first made by Paul
Dirac in 1931 [1], before which time an isolated magnetic charge was forbidden by classical
electromagnetic theory. In grand unification theory, magnetic monopoles are proposed to
be related to the solitons [2,3] in non-abelian gauge fields [4,5]. Nowadays, some physicists
tend to believe that there should be magnetic monopoles to explain the existence of quan-
tized electric charges [1,6], of elementary particles such as an electron. The description of
magnetic and electric properties of magnetic monopoles is a straightforward extension of
classical electromagnetism. It is known that the combined electric and Lorentzian forces
that an electron with charge e will experience under an electromagnetic field is as follows:

Fe = e(E + v× B), (1)

where E, v, B represents the external electric field, velocity of the charge, and magnetic
induction intensity. Using the duality of electrons and monopoles, one can write the
expression for a monopole having magnetic charges g, with replacing B by E/c, E by -cB.
The elementary charge g of a magnetic monopole is defined as g = 2πh̄

eµ0
using the Ampere’s

form of Dirac quantization [7]. h is the Planck’s constant and µ0 the vacuum magnetic
permeability. Then, the electromagnetic force of a magnetic monopole is represented as
the following:

Fg = g(B− v/c2 × E). (2)

Although the free-standing magnetic monopoles characterized by large masses of
1017 GeV [8] are still under intensive research, it does not impede one from considering
quasiparticles bearing the features of a magnetic monopole in solids [9]. For example, a
pair of Weyl points with opposite Chern numbers can be considered as a monopole dipole
in Weyl semimetals such as TaAs and WTe2 [10–13]. Moreover, a magnetic monopole phase
transition was reported in the spin ice [14–17]. The elementary excitation of the spin ice
material may generate the quasiparticles resembling the magnetic monopole-antimonopole
pairs, which in principle may provide a opportunity for scientists to study the quasiparticles
behaving like the magnetic monopoles. Here, we consider the monopole quasiparticles
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that constitute the collective modes of a medium composed by billions of particles. Initially,
the centers of opposite magnetic charges of monopole excitons coincide; therefore, the
system is magnetically neutral. By applying the magnetic field to the system, charges will
be pulled away from the original position. Hence, a non-zero magnetic dipole moment will
be generated. This toy model would apply for a one-dimensional magnetic crystal material,
where energy bands may be introduced for magnetic monopoles and antimonopoles in the
same way as they are introduced for electrons and holes in a semiconductor.

2. One-Dimensional Magnetic Susceptibility

When a time-dependent A.C. magnetic field B0(t) is applied to the magnetic neutral
system, a parallel displacement of x will take place from original equilibrium position
between the opposite monopole charges, resulting in an exciton-like monopole dipole
with dipole momentum p = gx, as shown in Figure 1. The motion of monopoles can be
described by the damped driven oscillator model [18,19], which is written as follows:

m0
d2x
dt2 = −2m0γ

dx
dt
−m0ω2

0x + gB0(t), (3)

where m0 and ω0 is the oscillator mass and resonance frequency and γ is the damping
constant. B0(t) = B0(ω)e−iωt is the complex magnetic field. Obviously, a solution with the
formation x(t) = x(ω)e−iωt satisfies Equation (3). Therefore, we have the following:

x(ω) = − gB0(ω)

m0(ω2 + 2iγω−ω2
0)

. (4)

Figure 1. Magnetic field is parallel to the magnetic monopole dipole moment, displacement from
equilibrium center is x.

Recall that the polarization of an electric dipole is defined as Pe = ε0χeE = ∑i pei,
where ε0 is the vacuum dielectric constant, χe the optical susceptibility, pe the electric dipole
momentum. The magnetic polarization (magnetization) is likely M = µ−1

0
χB

1+χB
B0 = ∑i mi,

where mi represents the magnetization contributed from the i-th dipole in the system.
Suppose the molar concentration of magnetic monopole dipole is nm; hence, M(ω) =
n0gx(ω) = µ−1

0
χB

1+χB
B0. Finally the magnetic susceptibility χB(ω) can be read as:

χB(ω) = − n0g2µ0

m0(ω2 + 2iγω−ω2
0) + n0g2µ0

. (5)

3. Single Magnetic Monopole in Periodic Triangle Magnetic Potential Field

We consider in one-dimension a magnetic monopole move under an effect of a periodic
uniform magnetic field. The monopole is characterized by the elementary magnetic charge
g, given by the Dirac quantization condition, eg = h/µ0, where e is the elementary electron
charge, h the Planck constant, and µ0 the vacuum magnetic permeability constant. The
force that the monopole experiences can be written as Fg = ±gB0, where ±B0 is the local
magnetic flux density as shown in Figure 2 left, with corresponding magnetostatic field
potential V presented in the right.
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Figure 2. Profiles of magnetic field (left) and potential of monopole in the field (right).

The Hamiltonian of the monopole reads as follows:

Ĥ = − h̄2

2mg
∆x + V, (6)

where mg is the mass of a magnetic monopole and Ψ is the wave function. Defining the
Fourier transform of a real-space wave function as Ψ(x) = 1√

2πh̄

∫ +∞
−∞ φ(p)eipx/h̄dp, we

may transform this Hamiltonian to one defined in the momentum space, as follows:

Ĥp = − p2

2mg
+ V(x̂), (7)

with the duality of position and momentum operators x̂ = ih̄∇p and p̂ = −ih̄∇x. Since
φ(p) is the eigenstate of p̂, we may write the Schrödinger equation as:

Eφ(p) = [
p2

2mg
+ V(x̂)]φ(p). (8)

For an infinite periodic potential field, it is convenient to solve the Schrödinger equa-
tion in one single period and then use the Bloch theorem to simplify the procedure of
calculating the whole wave function. Let us look at the period of x ∈ [0, 2a]. By decompos-
ing the potential field into two segments of x ∈ [0, a) and x ∈ [a, 2a), for the first segment,
the problem we are confronting becomes solving the Schrödinger equation below:

Eφ(p) = [
p2

2mg
+ ih̄gB0∇p]φ(p). (9)

This is a first-order differential equation that one can easily solve, whose answer is
as follows:

φ(p) = e
[ i

h̄gB0
(

p3
6mg −Ep)]

. (10)

For simplicity, the normalization coefficient is ignored here, while the normalization
condition is

∫ +∞
−∞ φ∗(p)φ(p)dp = 1. Inverse Fourier transform of Equation (10) gives the

wave function in real space, which is

Ψ(x) =
2√
2πh̄

∫ +∞

0
dp cos[

p3

6h̄gB0mg
+

p
h̄
(x− E

gB0
)]. (11)
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The right side of Equation (11) has the same form of the Airy function. By substituting

variables such as u = p
3
√

2h̄mggB0
and v = (x − E

gB0
) 3
√

2mggB0

h̄2 , Equation (11) becomes the

standard Airy function with respect to v:

Ψ(x) =
2 3
√

2h̄mggB0√
2πh̄

∫ +∞

0
du cos(

u3

3
+ uv)

= 2
5
6 π

1
2 h̄−

1
6 (mggB0)

1
3 Ai(v). (12)

In particular, the Airy function can be expressed with the linear combination of 1/3-
order Bessel functions:

Ai(|v|) =
√

v
3
·

[J−1/3(
2|v|3/2

3 ) + J1/3(
2|v|3/2

3 )], v<0,

[I−1/3(
2|v|3/2

3 )− I1/3(
2|v|3/2

3 )], v≥0,
(13)

in which J is the first kind of Bessel function and I is the modified Bessel function. Notably,
x ≥ 0 indicates V ≥ E, which means the system enters the forbidden area in classical
mechanism. As a result, the wave function will decay rapidly away from x = 0.

Let us now analyze the second segment where x ∈ [a, 2a). For convenience, shifting
the potential fields to the left side by a, the Schrödinger equation becomes the following:

(E−V0)φ(p) = [
p2

2mg
− ih̄gB0∇p]φ(p). (14)

Then, the solution of Equation (14) reads:

φ(p) = e
[− i

h̄gB0
(

p3
6mg −(E−V0)p)]

. (15)

The wave function in real space is as follows:

Ψ(x) =
2√
2πh̄

∫ +∞

0
dp cos[

p3

6h̄gB0mg
− p

h̄
(x +

E−V0

gB0
)]

=
2 3
√

2h̄mggB0√
2πh̄

∫ +∞

0
du cos(

u3

3
+ uv)

= 2
5
6 π

1
2 h̄−

1
6 (mggB0)

1
3 Ai(v),

(16)

where u = p
3
√

2h̄mggB0
and v = (−x− E−V0

gB0
) 3
√

2mggB0

h̄2 . Substituting x with x− a, which means

that we shift the wave function back to the segment of x ∈ [a, 2a). Finally, the wave function

in one single period of x ∈ [0, 2a) can be written as Ψ(x) = 2
5
6 π

1
2 h̄−

1
6 (mggB0)

1
3 Ai(v), with

v =

(x− E
gB0

) 3
√

2mggB0

h̄2 , 0 ≤ x <a,

(−x + a− E−V0
gB0

) 3
√

2mggB0

h̄2 , a ≤ x <2a.

However, this solution only satisfies the condition of continuity, while the momentum
conservation law might be broken in at the joint of opposite magnetic fields. To do this, the
second Airy function needs to be introduced:

Bi(|v|) =
√

v
3

[J−1/3(
2|v|3/2

3 )− J1/3(
2|v|3/2

3 )], v<0,

[I−1/3(
2|v|3/2

3 ) + I1/3(
2|v|3/2

3 )], v≥0.
(17)
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Bi is linearly independent of Ai with phase difference equal to π; therefore, the wave
function can be expressed by the linear superposition of both Airy functions, which is
as follows:

Ψ(x) =2
5
6 π

1
2 h̄−

1
6 (mggB0)

1
3

×
{

A · Ai(v) + B · Bi(v), 0 ≤ x <a,
C · Ai(v) + D · Bi(v), a ≤ x <2a.

(18)

In Equation (18), A, B, C, D are coefficients to be determined by following bound-
ary condition:

A · Ai(v|x = a) + B · Bi(v|x = a) = C · Ai(v|x = a) + D · Bi(v|x = a),
A · A′i(v|x = a) + B · B′i(v|x = a) = C · A′i(v|x = a) + D · B′i(v|x = a),
eik2a[A · Ai(v|x = 0) + B · Bi(v|x = 0)] = C · Ai(v|x = 2a) + D · Bi(v|x = 2a),
eik2a[A · A′i(v|x = 0) + B · B′i(v|x = 0)] = C · A′i(v|x = 2a) + D · B′i(v|x = 2a).

The first two equations are from the continuity of the wave function and its first
derivative. The last two equations are based on the Bloch theorem where eik2a is the phase
factor after the magnetic monopole traveling through one period. As we can always set
one of A, B, C, D as 1, there are four coefficients in the four equations of different boundary
conditions, indicating that these coefficients can be determined by solving this equation
array. In Figure 3 we show the numerical solution of the wave function under the natural
unit where all constants are set to 1. The calculated pseudo-wavevector is k = 0.48π.
Finally, the wave function in the entire space reads as follows:

Ψ(x + n · 2a, n ∈ Z) = 2
5
6 π

1
2 h̄−

1
6 (mggB0)

1
3 eikn2a ×

{
A · Ai(v) + B · Bi(v), 0 ≤ x <a,
C · Ai(v) + D · Bi(v), a ≤ x <2a.

(19)

Figure 3. Numerical solution of the wave function of the monopole in one period of the magnetic
field. The pseudo-wavevector is k = 0.48π. The wave function is divided into barrier and well
regions and shown in blue color, while the red vertical dashed line indicates the boundary where the
sign of the magnetic field flips, and the green vertical dashed lines are the boundaries of barrier and
well regions depending on the relationship between energy of the monopole and local potential of
the magnetic field.
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4. The Energy Spectrum of a Magnetic Monopole Exciton

In this section, we solve the energy spectrum of magnetic monopole exciton by consid-
ering one monopole carrying an elementary charge −g moving in the Coulombic potential
of the opposite monopole charge g, while the Hamiltonian of a magnetic monopole exciton
is quite similar to that of an electron-hole exciton or the electron in a hydrogen atom.
Before doing this, we need to express the Gauss divergence theorem for a point source
magnetic monopole: ∫∫∫

∇ · BdV =
∫∫

BdS = gµ0 (20)

This allows one to write the magnetic field as well as the field potential generated
from an elementary magnetic monopole charge:

B =
gµ0

4πr2 r̂,

VB(r) =
gµ0

4πr
.

Hence, the Schrödinger equation of the motional magnetic monopole g in the monopole
exciton reads:

Ĥgψg = [− ∆
2m∗g

− g2µ0

4πr
]ψg = Egψg. (21)

The solution to the electron version of Equation (21) is the famous stationary wave
function of electron in a hydrogen atom. Therefore, one can directly write down the
eigenenergy Eg as follows:

Eg = −
m∗g
2h̄2 (

g2µ0

4π
)2 1

n2 = − h̄2

2m∗ga2
B

1
n2 , n=1,2,3,..., (22)

with the monopole Bohr radius being aB = 4πh̄2

m∗gg2µ0
. Furthermore, the binding energy of a

monopole exciton, EB, which characterizes the energy that it costs to separate the monopole
exciton, can be expressed as follows:

EB =
h̄2

2m∗ga2
B

. (23)

It is well-known that the binding energy of an electron-hole pair exciton varies from
meV (a Wannier-Mott exciton in an inorganic semiconductor) to several eV (a Frenkel
exciton in an organic crystal) [20]. Excitons with larger binding energy are more stable. For
the magnetic monopole exciton, we assume the binding energy is 2.0 eV (617 nm), one can
calculate the effective mass m∗g = 6.1 ∗ 10−39 kg from Equation (23). Besides, the process of
photon emission or adsorption takes place in transitions between different energy levels m
and n of monopole exciton, whose frequencies ωmn shall satisfy the following condition:

h̄ωmn =
m∗g
2h̄2 (

g2µ0

4π
)2(

1
m2 −

1
n2 ), m<n. (24)

In analogue to the electron-hole exciton polariton, one can define the monopole
exciton polariton as the superposition of excitonic states and photonic states, which will be
discussed in the next section.

5. Magnetic Wave Equation of Monopole Exciton Polariton

In this section, we propose the model for magnetic monopole exciton-polariton, as
an analogue to the conventional exciton-polariton. The coupling between the monopole
exciton and the cavity photon in a microcavity system would lead to the emergence of the
monopole exciton-polariton. For a static magnetic monopole, the divergence of magnetic
induction intensity, B, is∇ · B = ρB. Using the equality of vector calculation,∇×∇× B =
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∇(∇ · B) − ∇2B = −∇2B. While combining the Maxwell’s equation, one will have
∇×∇× B = −µε ∂2B

∂t2 , where µ and ε are the permeability and permittivity, respectively.
Notice that the relationship between magnetic induction intensity, magnetization and
magnetic field is B = µH = µ0(H + M), M = χBH. Therefore, the constitutive equation of
the magnetic field is:

µB
1
c2

∂2H
∂t2 +∇×∇×H = − 1

c2
∂2M
∂t2 , (25)

where µB is the normalized magnetic permeability, µB = 1 for vacuum. Moreover, from
Equation (3), one can derive the relationship between magnetization and the magnetic field:

[
∂2

∂t2 + 2γ
∂

∂t
+ ω2

0 −
h̄ω0

Mx
∇2]M = µBω2

pH, (26)

where the extra term of h̄ω0
2Mx

comes from the kinetic energy of the magnetic monopole
exciton, with Mx being the mass of monopole exciton, ωp the Rabi-frequency of monopole
polariton. By Fourier transform, the derivative of time and space will be replaced by
frequency and the momentum variable. Hence, we have the following:

M(ω, k) =
µBω2

pH(ω, k)

−ω2 − 2iγω + ω2
0 +

h̄ω0k2

Mx

. (27)

The magnetic susceptibility is, then, the following:

χB(ω, k) =
µBω2

p

−ω2 − 2iγω + ω2
0 +

h̄ω0k2

Mx

. (28)

We focus on the region near the resonant frequency ω0; hence, χB can be written as:

χB(ω, k) =
µBω2

p/2ω0

−ω + ω0 − iγ + h̄k2

2Mx

. (29)

Using the dispersion relationship [21], k2 = µεω2, one will have k2 = (χB + µB)
ω2

c2 .
Substituting this condition to Equation (29), we find the dispersion relationship of two
transverse polaritonic modes written as follows:

k2
± =

Mx

h̄
(ω−ω0 + iγ +

h̄µBω2

2Mxc2 )

± Mx

h̄

√
(ω−ω0 + iγ +

h̄µBω2

2Mxc2 )
2 +

2h̄µBω2

Mxc2 (−ω + ω0 − iγ +
ω2

p

2ω0
).

(30)

For the longitudinal mode of monopole polariton, the dispersion is:

k2
l =

2Mx

h̄
(ω−ω0 + iγ−

ω2
p

2ω0
). (31)

Following the previous discussion about the mass of a magnetic monopole, the pa-
rameters were taken as Mx = 2mg = 2 × 103m∗g, µB = 10−2, h̄ω0=2.337 eV (532 nm),
h̄γ = 5× 10−3 eV and h̄ωp=0.153 eV. Figure 4 shows the dispersion curves of two trans-
verse modes (red/blue) and one longitudinal mode (green). The steepest slope of the red
curve can be ascribed to the contribution of photon mode while the exciton part contributes
the most to the parabolic blue curve.
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Figure 4. Dispersion relationship of magnetic monopole polariton described in Equations (30) and
(31), with red/blue/green curve belonging to k−/k+/kl .

The magnetic monopole exciton-polariton dispersion relationship in a microcavity
system can also be performed with the well-known coupled oscillator model [22]. In
general, the secular equation describing the coupling between magnetic exciton and photon
could be written as follows:[

h̄ω0 − ih̄γ Vc
Vc h̄ωcav − ih̄γcav

](
α
β

)
= E±

(
α
β

)
, (32)

where ωcav, γcav are the frequency and broadening of the cavity mode. The off-diagonal
element Vc represents the strength of coupling. α and β together construct the eigen-vector
of the Hamiltonian, while the eigen-energy E± can be solved with

E± =
h̄
2
(ω0 + ωcav − iγ− iγcav)±

√
V2

c +
h̄2

4
(ω0 −ωcav − iγ + iγcav)2. (33)

We focus on the strong coupling regime where Vc > h̄| γ−γcav
2 |. The definition of the

strong coupling regime here is the same with that of the conventional exciton-polariton [22],
where the Rabi splitting exceeds the decay rates of the magnetic monopole exciton and photon.
Experiments in exciton-polariton have shown that those are tunable parameters by switching
the properties such as the quality factor of the optical cavity and carrier density [19]. The dis-
persion curve of monopole exciton-polariton in a microcavity system, given by Equation (33),
is shown in Figure 5 with parameters h̄ω0 = 2.337 eV, ∆ = h̄(ω0 − ωcav) = 0.05 eV,
h̄γ = 5 meV, h̄γcav = 2 meV. The inplane dispersion of exciton-polariton is plotted with
solid line, while the dashed lines show the bare cavity mode and exciton mode.

Figure 5. The coupled oscillator model of a magnetic monopole polariton in a microcavity system.
Solid lines: dispersion curves of exciton-polariton. Dashed lines: non-coupled exciton (yellow) and
cavity mode (purple).
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6. Conclusions

In summary, we established the concept of a magnetic monopole exciton-polariton, a
quasiparticle in analogue to the conventional exciton polariton, which is sensitive to the
magnetic response of the system at the frequency of the external electromagnetic radiation.
We used the damped driven oscillator model to analytically derive the magnetic suscepti-
bility of a magnetic monopole under an A.C. magnetic field, and solved the Schrödinger
equation of an elementary magnetic monopole in a periodic triangle potential field, which
might be able to model the monopole in the periodic lattice. Specifically, we studied the en-
ergy spectrum of a magnetic monopole exciton and combined the damped oscillator model
to derive the susceptibility and dispersion relationship of a monopole polariton. We believe
that by placing the materials with monopole quasiparticles in optical cavities, it should be
possible to optimize the systems for studies of magnetic monopole exciton-polaritons. In
recent years, we have seen that the researches of exciton-polariton largely benefit the study
of optics [23], quantum computation [24] and chemistry [25,26], which are also potential
playgrounds for the monopole exciton-polariton.
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