___ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ __ И НАНОМАТЕРИАЛЫ

УДК 537.621:541.18.02

Посвящается 300-летию основания Санкт-Петербургского государственного университета

ПОЛУЧЕНИЕ КЕРАМИКИ НА ОСНОВЕ СИСТЕМЫ Cs₂O-Al₂O₃ МЕТОДАМИ ТВЕРДОФАЗНОГО СИНТЕЗА И ГЛИЦИН-НИТРАТНОГО ГОРЕНИЯ

© 2023 г. А. В. Федорова^{а,} *, В. А. Столяров^а, М. Е. Павелина^а, П. Д. Колоницкий^а, С. О. Кириченко^а, А. В. Тимчук^b, В. Л. Столярова^а

^аСанкт-Петербургский государственный университет, Университетская наб., 7, Санкт-Петербург, 199034 Россия ^bСанкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), ул. Профессора Попова, 5, литера Ф, Санкт-Петербург, 197022 Россия

> *e-mail: avfiodorova@gmail.com Поступила в редакцию 20.02.2023 г. После доработки 17.03.2023 г. Принята к публикации 20.03.2023 г.

Методами стандартного твердофазного синтеза и глицин-нитратного горения получены образцы керамики на основе системы $Cs_2O-Al_2O_3$ с содержанием оксида цезия 20 и 33 мол. %. Полученные образцы идентифицированы и исследованы методами рентгенофазового и рентгенофлуоресцентного анализа, сканирующей электронной микроскопии и дифференциального термического анализа. С помощью рентгенофазового анализа и сканирующей электронной микроскопии удифференциального термического анализа. С помощью рентгенофазового анализа и сканирующей электронной микроскопии установлено, что фазовый состав и поверхность образцов существенно и немонотонно изменяются в зависимости от методики синтеза и условий термической обработки шихты. Выявлены оптимальные условия синтеза образцов в системе $Cs_2O-Al_2O_3$ и условия термической обработки шихты.

DOI: 10.31857/S0044457X23600275, EDN: RIKGEI

ВВЕДЕНИЕ

Несмотря на большое количество публикаций, посвященных оксо- и гидроксосоединениям алюминия, по-прежнему актуальны работы, направленные на разработку методов получения, исследование и применение оксидной керамики на основе Al_2O_3 [1–3]. Это связано с его повышенной химической, термической и механической стабильностью [4–6], а также способностью образовывать различные полиморфные модификации [7–9].

Среди систем на основе оксида алюминия наименее изученной является система $Cs_2O-Al_2O_3$. Однако в последние годы успешно реализуются подходы для получения люминесцентной керамики, допированной атомами европия, состава $CsAlO_2$: Eu^{3+} [10], наноразмерных частиц $CsAlO_2$, перспективных для использования в оптических устройствах [11], а также катализаторов на основе системы $Cs_2O-Al_2O_3$ [12, 13]. Установлено, что особенностью цезиевых оксидных систем является образование рентгеноаморфного и

стеклообразного состояния [14, 15], что приводит к сложностям при выборе синтетического подхода для получения оксидной керамики, содержащей оксид цезия. Однако, несмотря на повышенный научный и практический интерес к оксидной керамике на основе оксидов алюминия и цезия, диаграмма состояния для системы Cs₂O—Al₂O₃ пока отсутствует [16].

Характерной особенностью системы $Cs_2O-Al_2O_3$ является гигроскопичность оксосоединений цезия, зависимость строения кристаллической решетки оксида алюминия от способов и условий получения образцов, а также летучесть соединений цезия при высоких температурах [17, 18].

Именно эти факторы обусловливают постановку задачи выбора оптимального и корректного метода синтеза образцов системы $Cs_2O-Al_2O_3$. При выборе метода синтеза оксидной керамики приоритетным является метод стандартного твердофазного синтеза [19–22]. К достоинствам этого метода, как известно, относят его экспрессность и простоту исполнения. Метод заключается в гомогенизации смеси исходных веществ и последующем прокаливании шихты при высоких температурах. Поскольку в твердофазных реакциях процессы диффузии протекают с малой скоростью, исключительно важно добиться равномерного распределения реагентов по всему объему шихты во время гомогенизации. В некоторых случаях такой подход не является оптимальным и тогда прибегают к методам так называемой химической гомогенизации в водных растворах [23, 24].

Наряду с твердофазным синтезом в настоящее время находит широкое применение метод глицин-нитратного горения [24, 25], основанный на формировании частиц образца в процессе кратковременного горения. В основе метода лежит окислительно-восстановительная реакция в водном растворе между нитрат-ионами и глицином. Ввиду того, что глицин выполняет роль не только окислителя, но и органического топлива, особое внимание уделяется его количеству, которое необходимо для осуществления синтеза и является индивидуальным для систем различной химической природы [26].

В связи с отсутствием фазовой диаграммы системы $Cs_2O-Al_2O_3$, гигроскопичностью и летучестью соединений цезия целью настоящей работы было изучение возможности использования методов стандартного твердофазного синтеза и глицин-нитратного горения для получения керамики на основе системы $Cs_2O-Al_2O_3$ с содержанием оксида цезия 20 и 33 мол. % с последующей идентификацией полученных образцов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения исследуемых образцов керамики стандартным твердофазным методом использовали γ -Al₂O₃, полученный в лабораторных условиях, и Cs₂CO₃ (99.9%, х. ч., ТУ 6-09-638-80, Россия). Низкотемпературная модификация γ -Al₂O₃ была получена термическим разложением Al(NO₃)₃ · 9H₂O (97%, ч., ГОСТ 3757-75, Россия) при температуре 573 К. Карбонат цезия предварительно прокаливали при 1073 К в течение 12 ч.

Согласно методике стандартного твердофазного синтеза, рассчитанные количества карбоната цезия и γ -Al₂O₃ совместно гомогенизировали в агатовой ступке в течение 1 ч. Из-за гигроскопичности карбоната цезия гомогенизацию исходных веществ проводили в среде изопропилового спирта. Поскольку в литературных источниках отсутствуют условия получения образцов системы Cs₂O-Al₂O₃ твердофазным методом, количество изопропилового спирта для гомогенизации реагентов подбирали экспериментально. С целью выявления влияния количества изопропанола на характеристики образцов (фазовый состав, морфология поверхности), полученных методом стандартного твердофазного синтеза, для гомоге-

низации рассчитанных количеств реагентов для получения образца, содержащего 20 мол. % оксида цезия, использовали меньшее количество изопропилового спирта по сравнению с образцом, содержащим 33 мол. %. Гомогенизацию исходных веществ при получении образца, содержащего 33 мол. % оксида цезия, осуществляли в избыточном количестве изопропилового спирта по отношению к заданной навеске шихты.

Полученную таким образом шихту прессовали в таблетки с помощью пресс-формы из органического стекла и прокаливали в муфельной печи в открытых корундовых тиглях при температурах и в течение следующего времени: 773 К – 15 ч, 873 К – 10 ч, 973 К – 15 ч, 1073 К – 10 ч, а при 1373 К – 10 ч. После выполнения каждого из указанных отжигов были проведены исследования фазового и элементного составов методами рентгенофазового и рентгенофлуоресцентного анализа.

Принимая во внимание исключительно высокую тенденцию оксида цезия к испарению, в качестве альтернативного способа получения исследуемых образцов был выбран также метод глицин-нитратного горения. Для синтеза методом глицин-нитратного горения образца Cs₂O-Al₂O₃ с содержанием оксида цезия 20 мол. % были выбраны следующие реактивы: Cs₂CO₃ (99.9%, х. ч., ТУ 6-09-638-80, Россия) и Al(NO₃)₃ · 9H₂O (97%, ч., ГОСТ 3757-75, Россия). Рассчитанные количества исходных вешеств растворяли в разбавленном растворе азотной кислоты при постоянном нагревании на песчаной бане. Соотношение воды к кислоте составляло 1 : 2 по объему. После полного растворения указанных выше исходных веществ в раствор добавляли глицин в мольном соотношении (n_i) к исходным веществам $n_{\text{Cs}_2\text{CO}_3}$: $n_{\text{Al}(\text{NO}_3)_3 + 9\text{H}_2\text{O}}$: $n_{\text{C}_2\text{H}_3\text{NO}_2} = 1.0$: 8.1 : 17.2, после чего смесь продолжали нагревать до кипения для удаления растворителя. После испарения растворителя в процессе кипения наблюдали самовозгорание реакционной смеси. После окончания процесса горения смесь представляла собой белый мелкодисперсный порошок с темными вкраплениями углерода, который прессовали в таблетки при помощи пресс-формы из органического стекла и прокаливали в муфельной печи при температурах в течение указанного времени: 773 К – 15 ч, 873 К – 10 ч, 973 К – 15 ч, 973 К – 365 ч, а также при 973 К 870 ч. После каждого прокаливания проводили рентгенофазовый и рентгенофлуоресцентный анализ образцов для установления их фазового и количественного состава.

Для получения образца системы Cs₂O−Al₂O₃, содержащего 33 мол. % оксида цезия, применяли метод глицин-нитратного горения. В качестве исходных веществ были выбраны CsNO₃ (CAS № 7789-18-6, 99.9%, х. ч., ТУ 6-09-437-75, Россия)

2023

№ образца	Соотношение Cs ₂ O : Al ₂ O ₃ по синтезу, мол. %	Метод синтеза	Исходные вещества	Т, К	Время синтеза τ, ч
1	20:80	Твердофазный	Cs ₂ CO ₃	773	15
2			γ -Al ₂ O ₃	873	10
3				973	15
4				973	365
5				973	870
6				1073	10
7				1373	10
8	33:67	Твердофазный с избытком	Cs ₂ CO ₃	773	15
9		изопропилового спирта	γ -Al ₂ O ₃	873	10
10				973	15
11				973	365
11a				383	2
12				973	870
13				1073	10
14				1373	10
15	20:80	Глицин-нитратное горение	Cs ₂ CO ₃	773	15
16			$Al(NO_3) \cdot 9H_2O$	873	10
17				973	15
18				973	365
19				973	870
20				1073	10
21	33:67	Глицин-нитратное горение	CsNO ₃	773	15
22			$Al(NO_3) \cdot 9H_2O$	873	10
23				973	15
24				973	365
25				973	870
26				1073	10

Таблица 1. Условия синтеза образцов керамики системы Cs₂O-Al₂O₃

и Al(NO₃)₃ · 9H₂O (97%, ч., ГОСТ 3757-75, Россия). После растворения рассчитанных количеств нитратов металлов в дистиллированной воде в раствор вводили глицин в мольном соотношении, рассчитанном по формуле:

$$n(C_2H_5NO_2) = 5\sum n(NO_3)/9$$

где *n* — число молей восстановителя на 1 моль продукта [27].

Следует отметить, что для получения образца, содержащего 33 мол. % оксида цезия, количество глицина рассчитывалось таким образом, чтобы процесс горения реакционной смеси протекал менее интенсивно. Полученные смеси прессовали в таблетки и прокаливали при следующих температурах и времени: 773 К - 15 ч, 873 К - 10 ч, 973 К - 15 ч, 1073 К -10 ч, 973 К - 365 ч, а также при 973 К 870 ч. Как и в предыдущем случае, образцы, полученные после каждого прокаливания, были идентифицированы методами рентгенофазового и рентгенофлуоресцентного анализа.

Для дальнейшего изучения физико-химических свойств системы $Cs_2O-Al_2O_3$ полученные образцы, согласно условиям синтеза, приведенным в табл. 1, были идентифицированы и охарактеризованы методами рентгенофазового и рентгенофлуоресцентного анализа, сканирующей электронной микроскопии и дифференциального термического анализа.

Рентгенофазовый анализ проводили на дифрактометрах Bruker D2 Phaser с медным катодом (Cu $K_{\alpha 1,2}$ -излучение, напряжение 30 кB) и Rigaku Ultima IV с кобальтовым анодом.

Рентгенофлуоресцентный анализ выполняли на энергодисперсионном рентгенофлуоресцентном спектрометре серии EDX 800 HS (Shimadzu) в вакууме в диапазоне характеристических линий излучения элементов от углерода до урана.

Сканирующую электронную микроскопию поверхности образцов проводили на сканирующем электронном микроскопе Hitachi S-3400N с аналитической приставкой – спектрометром Oxford Instruments X-Max 20 для энергодисперсионного анализа.

Сканирующую электронную микроскопию высокого разрешения выполняли на сканирующем электронном микроскопе Zeiss Merlin с полевым эмиссионным катодом, колонной электронной оптикой Gemini-II и безмасляной вакуумной системой. Регистрацию сигнала осуществляли детектором вторичных электронов In-lens SE и SE2. Микроанализ образцов проводили с помощью дополнительной приставки для рентгеновского микроанализа Oxford Instruments INCAx-act.

Высокотемпературный термический анализ образцов системы $Cs_2O-Al_2O_3$ осуществляли на синхронном термическом анализаторе Shimadzu DTG-60 в интервале температур 298—1373 К. Для проведения термического анализа образцы были спрессованы под давлением 200 атм в тонкие таблетки, фрагменты которых находились в платиновом тигле. Перед термическим анализом образцов был выполнен холостой опыт на пустых тиглях, с учетом результатов которого была проведена коррекция сигнала образцов после проведения съемок.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенофазовый анализ

Стандартным твердофазным синтезом и методом глицин-нитратного горения с использованием исходных веществ разного химического состава при различных условиях термической обработки — температуре (T) и времени (τ) — получены образцы системы $Cs_2O-Al_2O_3$, содержащие 20 и 33 мол. % оксида цезия. В табл. 1 приведены состав и нумерация образцов настоящего исследования с указанием методики и условий синтеза для каждого образца. Отметим, что именно нумерация образцов, приведенная в табл. 1, будет использована при дальнейшем изложении.

На рис. 1–4 представлены дифрактограммы полученных образцов в системе $Cs_2O-Al_2O_3$. На рис. 1 приведены дифрактограммы образцов **1–6** системы $Cs_2O-Al_2O_3$ с содержанием оксида цезия 20 мол. %, полученных стандартным твердофазным методом из Cs_2CO_3 и γ - Al_2O_3 с гомогенизацией в среде изопропилового спирта. Прокаливание полученной шихты осуществляли при различных условиях – температуре и времени. Методом рентгенофазового анализа установлено, что все образцы после синтеза содержали более 80% аморфной фазы. В связи с этим проведение дальнейшей идентификации фаз в полученных образцах было затруднено.

В образце, полученном после прокаливания шихты при температуре 973 К в течение 365 ч (образец 4), количество кристаллической фазы было наибольшим по сравнению с образцами, полученными этим же методом, но при других условиях изотермической выдержки. Дифракционные максимумы этого образца обнаружены на углах 20 = 28.75°, 25.64°, 37.67°, 18.33°, 20.35° и могут принадлежать самым интенсивным пикам кристаллических фаз гидроксида алюминия Al(OH)₃ (гиббсит) (14, P121/n1, ICDD PDF-2/Release 2011 01-080-7022), триклинной модификации N⁰ Al(OH)₃ (2, P1, ICDD PDF-2 Release 2016 RDB № 01-077-9948), eta-Al₂O₃ (227, $Fd\overline{3}m$, ICDD PDF-2 Release 2016 RDB № 00-056-0458), CsAlO₂ (227, *Fd*3*m*, ICDD PDF-2 Release 2016 RDB № 01-074-2291). Повышение температуры прокаливания шихты до 1073 К (образец 6) приводит к образованию рентгеноаморфного образца.

Следует отметить, что во всех образцах, содержащих большое количество рентгеноаморфной фазы, идентифицированы дифракционные максимумы низкой интенсивности на углах вращения кристалла 2θ , соответствующих основным дифракционным пикам кристаллических фаз, обнаруженных ранее в образце **4**.

На дифрактограмме образца системы $Cs_2O-Al_2O_3$, содержащего 20 мол. % оксида цезия, полученного стандартным твердофазным методом с последующим прокаливанием при температуре 1373 К в течение 10 ч (образец 7), была обнаружена только кристаллическая фаза α -Al₂O₃. Таким образом, выбранная температура прокаливания шихты не позволяла получить образцы системы $Cs_2O-Al_2O_3$.

Рис. 1. Дифрактограммы образцов системы $Cs_2O-Al_2O_3$ с содержанием 20 мол. % оксида цезия, полученных стандартным твердофазным методом из Cs_2CO_3 и γ - Al_2O_3 при различных условиях прокаливания шихты (табл. 1).

Рис. 2. Дифрактограммы образцов системы $Cs_2O-Al_2O_3$, содержащих 33 мол. % Cs_2O , полученных твердофазным методом из Cs_2CO_3 и γ -Al_2O_3 при различных условиях прокаливания шихты (табл. 1).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 7 2023

Рис. 3. Дифрактограммы образцов системы $Cs_2O-Al_2O_3$, содержащих 20 мол. % Cs_2O , полученных методом глициннитратного горения из Cs_2CO_3 и $Al(NO_3)_3 \cdot 9H_2O$ при различных условиях прокаливания шихты (табл. 1).

Рис. 4. Дифрактограммы образцов системы $Cs_2O-Al_2O_3$, содержащих 33 мол. % Cs_2O , полученных методом глициннитратного горения из $CsNO_3$ и $Al(NO_3)_3 \cdot 9H_2O$ при различных условиях прокаливания шихты (табл. 1).

Следовательно, оптимальными условиями для достижения максимальной кристаллизации образцов керамики на основе системы $Cs_2O-Al_2O_3$, полученных стандартным твердофазным методом из Cs_2CO_3 и γ -Al_2O_3 с гомогенизацией в среде изопропилового спирта, являются прокаливание

шихты при температуре 973 К в течение изотермической выдержки 365 ч.

На рис. 2 приведены дифрактограммы образцов системы $Cs_2O-Al_2O_3$, содержащих 33 мол. % Cs_2O , полученных твердофазным методом из

 Cs_2CO_3 и γ -Al₂O₃ с гомогенизацией в избыточном количестве изопропилового спирта. Методом рентгенофазового анализа установлено, что в образцах, полученных при прокаливании шихты при температурах в течение соответствующего времени: 773 К – 15 ч (образец 8), 873 К – 10 ч (образец 9), 973 K – 15 ч (образец 10), преобладает рентгеноаморфная фаза с дифракционными максимумами низкой интенсивности. Положение дифракционных максимумов этих образцов соответствует структуре гиббсита $Al(OH)_3$ (14, Pl21/nl, ICDD PDF-2/Release 2011 №01-080-7022). Heoбxoдимо подчеркнуть, что при длительном контакте с воздухом порошковые образцы 8-10, взаимодействуя с влагой, расплывались и переходили в пластилиноподобное состояние.

Дифрактограммы образцов, полученных при длительных изотермических выдержках: 365 ч (образец 11), 870 ч (образец 12) при температуре 973 К, а также 10 ч (образец 13) при 1073 К, имеют вид, характерный для многофазных образцов. Основные дифракционные максимумы для указанных образцов обнаружены при углах 20 = = 28.345°, 18.645°, 33.156°, 34.125°, 14.458° и 12.489°. Дифракционные максимумы образцов лежат в области дифракционных пиков кристаллических фаз гиббсита Al(OH)₃ (14, *P*121/*n*1, ICDD PDF-2/Release 2011 № 01-080-7022), γ -Al₂O₃ [28] и кубического алюмината цезия CsAlO₂ (227, *Fd*3*m*, ICDD PDF-2 Release 2016 №01-074-2291) [29].

На рис. 3 приведены дифрактограммы образцов 15-20 системы Cs₂O-Al₂O₃, содержащих 20 мол. % Cs₂O, полученных методом глициннитратного горения из Cs_2CO_3 и Al(NO₃)₃ · 9H₂O с прокаливанием при различных условиях (температура, время). Обращает на себя внимание тот факт, что в отличие от тех же образцов, синтезированных твердофазным методом, на дифрактограммах этой серии уже при температуре 773 К (образец 15) наблюдается относительно малое количество рентгеноаморфной фазы. При этом длительное прокаливание при температуре 973 К в течение 365 ч приводит к исчезновению кристаллической фазы (образец 18). Добиться образования кристаллической фазы в образцах, полученных этим методом, позволяет лишь прокаливание шихты при температуре 973 К в течение 870 ч (образец 19). Основные дифракционные максимумы на дифрактограмме этого образца обнаружены при значениях $2\theta = 28.701^{\circ}$, 18.008° , 25.535° , 37.632° и соответствуют кристаллической фазе гидроксида алюминия Al(OH)₃ (гиббсит) (14, P121/n1, ICDD PDF-2/Release 2011 № 01-080-7022). Методом дифрактометрии высокого разрешения в образце обнаружены низкоинтенсивные пики фаз триклинного $Al(OH)_3$, α - Al_2O_3 и $Cs_2(Al_2O(OH)_6.$

На рис. 4 представлены дифрактограммы образцов 21-26 системы Cs₂O-Al₂O₃, содержащих 33 мол. % Cs₂O, полученных методом глициннитратного горения из $CsNO_3$ и $Al(NO_3)_3 \cdot 9H_2O$ при различных условиях прокаливания шихты (температура, время). Образец 21, полученный после прокаливания при температуре 773 К в течение 15 ч, помимо основной рентгеноаморфной фазы содержит также фазу гиббсита Al(OH)₃ и CsNO₃ (144, P31, ICDD PDF-2 Release 2020 RDB № 01-079-0009). Наличие нитрата цезия в образце свидетельствует о том, что условия прокаливания были недостаточными для полного разложения промежуточных веществ, образующихся при синтезе. При прокаливании при температуре 873 К в течение 10 ч в образце 22 остается примесь нитрата цезия, при этом количество кристаллической фазы уменьшается. Оба образца при длительном контакте с воздухом поглощают воду и переходят в пластилиноподобную массу. При прокаливании шихты при температуре 1073 К в течение 10 ч образец 26 переходит в рентгеноаморфное состояние. Дифрактограмма образца 23, полученного после прокаливания при 973 К в течение 15 ч, соответствует профилю многофазного образца и также содержит как рентгеноаморфную, так и кристаллическую фазы. Основные дифракционные максимумы были найдены при значениях 20 = 19.495°, 28.696°, 28.786°, 16.973°, 34.128°, 39.376°, 32.112°, 21.015°, 33.366°, 26.671°, 58.539° и 17.713°. Обнаруженные дифракционные максимумы для указанных образцов лежат в области дифракционных пиков кристаллических фаз гиббсита Al(OH)3 и кубического алюмината цезия CsAlO₂. На дифрактограмме образца 25, полученного после прокаливания при температуре 973 К в течение 870 ч, основные дифракционные максимумы обнаружены при значениях $2\theta = 28.455^{\circ}$, 18.645° , 33.156° , 34.125° , 14.458°, 12.489° и соответствуют кристаллическим фазам гиббсита $Al(OH)_3$, γ - Al_2O_3 и CsAlO₂.

На дифрактограммах образцов, полученных после прокаливания шихт при температуре 1373 К в течение 10 ч, обнаружена только фаза оксида алюминия. Рентгенофлуоресцентный анализ этого образца подтвердил отсутствие в образце цезия. Следовательно, температурный режим 1373 К в течение 10 ч не может быть использован для получения образцов системы Cs₂O-Al₂O₃.

Таким образом, методом рентгенофазового анализа установлено, что во всех синтезированных образцах керамики на основе системы Cs_2O — Al_2O_3 , содержащих 20 и 33 мол. % Cs_2O , присутствует рентгеноаморфная фаза. Дифрактограммы исследованных образцов имеют вид, характерный для многофазных систем. В зависимости от метода синтеза и условий термической обработки

Рис. 5. Сравнение температурных зависимостей дифференциального термического сигнала (ДТА, мкВ) для образцов **10**, **11**, **11a**, **17–19**, **24** в системе Cs₂O–Al₂O₃.

шихты количество кристаллической фазы в образцах изменяется.

В исследованных образцах системы Cs₂O-Al₂O₃, содержащих 20 и 33 мол. % Cs₂O, содержание оксида алюминия превышает содержание оксида цезия. Ввиду гигроскопичности соединений цезия при контакте с водой часть оксида алюминия может образовывать различные гидроксоформы. Известно [22], что для гидроксида алюминия характерно образование двух стехиометрических составов: $Al(OH)_3 = Al_2O_3 \cdot 3H_2O$ и AlO(OH) = $= Al_2O_3 \cdot H_2O$. Для каждой из этих гидроксоформ существуют две кристаллические модификации: α и γ. При термическом обезвоживании гидроксида алюминия, а также других его гидроксосоединений в зависимости от температуры прокаливания возможна стабилизация различных полиморфных форм оксида алюминия: α -Al₂O₃, γ -Al₂O₃, χ -Al₂O₃, θ -Al₂O₃, η -Al₂O₃, δ -Al₂O₃. Остальные модификации оксида алюминия являются низкотемпературными и стабилизируются в мягких условиях синтеза. Наряду с этим известен также аморфный $Al_2O_3 \cdot nH_2O$ переменного состава. Таким образом, указанные обстоятельства в совокупности обусловливают многофазность и рентгеноаморфность полученных образцов.

Дифференциальный термический анализ

Образцы системы $Cs_2O-Al_2O_3$ с содержанием оксида цезия 20 и 33 мол. %, полученные стандартным твердофазным синтезом и методом глицин-нитратного горения были исследованы методом дифференциального термического анализа в интервале температур 298–1373 К.

На рис. 5 представлено сравнение температурных зависимостей дифференциального термического сигнала (ДТА) для образцов керамики в системе $Cs_2O-Al_2O_3$, полученных при разных условиях и пронумерованных в соответствии с табл. 1. Отметим, что образец **11а** получен путем дополнительной термообработки образца **11** при температуре 383 К в течение 2 ч перед проведением термического анализа.

Термический анализ образцов **10** и **17** не выявил значительной потери массы и тепловых эффектов в диапазоне температур от 298 до 1373 К. На кривых ДТА остальных образцов наблюдаются эндотермические пики в температурном интервале до 573 К. Общая потеря массы исследованных образцов приведена в табл. 2. Образец **17** представляет собой сухой керамический порошок с содержанием оксида цезия 20 мол. % и получен методом глицин-нитратного горения с последующим прокаливанием при температуре 973 К в течение 15 ч. Порошок образца **10** также устойчив к влаге воздуха, содержит 33 мол. % оксида цезия и получен твердофазным методом с

№ образца	17	18	19	10	11	11a	24
Соотношение Cs ₂ O : Al ₂ O ₃ по синтезу, мол. %	20:80	20:80	20:80	33 : 67	33 : 67	33:67	33:67
Δm	0	-24.57	-17.48	0	-36.32	-21.62	-26.82

Таблица 2. Суммарное изменение массы (Δm) образцов системы $Cs_2O-Al_2O_3$ по данным термогравиметрического анализа

изотермической выдержкой при тех же условиях, что и образец 17 (973 К в течение 15 ч).

Для остальных изученных образцах выявлена потеря массы, которую можно объяснить наличием адсорбированной воды на поверхности образцов. Образец **11** системы $Cs_2O-Al_2O_3$, содержащий 33 мол. % оксида цезия, полученный твердофазным методом при изотермической выдержке при 973 К в течение 365 ч, при длительном контакте с воздухом становился влажным. Перед проведением термического анализа образец **11** предварительно высушивали при температуре 383 К в течение 2 ч (образец **11а**). На кривой ДТА образца **11а** обнаружено два эндотермических пика при температурах 468.05 и 547.85 К, причем общая потеря массы составила 21.62%.

Микроскопия поверхности и рентгенофлуоресцентный анализ

На рис. 6–8 приведены микрофотографии поверхности образцов системы Cs₂O–Al₂O₃, полученные на сканирующем электронном микроскопе высокого разрешения.

На рис. 6а, 6б приведены микрофотографии поверхности образца **10**, содержащего 33 мол. % оксида цезия, полученного твердофазным методом с последующим прокаливанием при 973 К в течение 15 ч. Поверхность образца представлена кристаллитами неправильной формы различного размера. Размер крупных частиц варьируется в пределах 45—150 мкм и составляет 28% от общего количества частиц на исследованной поверхности образца. Мелкие частицы имеют размер в пределах 6—45 мкм и составляют 72% от всех частиц. На микрофотографии поверхности этого же образца, полученной при увеличении до 1 мкм (рис. 6б), видны кристаллиты маленьких размеров с оплывшими краями и сросшиеся друг с другом.

На рис. 7а, 76 приведены микрофотографии поверхности образца 17 исследованной системы Cs₂O-Al₂O₃, содержащего 20 мол. % Cs₂O, полученного глицин-нитратным методом в условиях прокаливания при 973 К в течение 15 ч. На приведенных изображениях видны образования различной формы и меньшего размера по сравнению с образцом 10, полученным стандартным твердофазным методом. На исследованном участке поверхности образца обнаружено 10% частиц с размером 20-50 мкм, ~32% частиц с размером 10-20 мкм и 58% частиц с размером, не превышающим 10 мкм. Использование глицин-нитратного метода для синтеза образцов системы Cs₂O-Al₂O₃ приводит к образованию более мелких частиц по сравнению со стандартным твердофазным мето-

Рис. 6. Микрофотографии с увеличением 20 (а) и 1 мкм (б) поверхности образца $Cs_2O-Al_2O_3$, содержащего 33 мол. % Cs_2O , полученного твердофазным методом с последующим прокаливанием при 973 К в течение 15 ч.

Рис. 7. Микрофотографии с увеличением 10 (а) и 1 мкм (б) поверхности образца системы Cs₂O–Al₂O₃, содержащего 20 мол. % Cs₂O, полученного методом глицин-нитратного горения при прокаливании шихты при 973 К в течение 15 ч.

Рис. 8. Микрофотографии при увеличении 10 (а) и 2 мкм (б) поверхности образца системы Cs₂O–Al₂O₃, содержащего 33 мол. % Cs₂O, полученного методом глицин-нитратного горения с прокаливанием при 973 К в течение 15 ч.

дом. На микрофотографии образца **17** при увеличении 1 мкм видны мелкие кристаллиты, не обладающие выраженным габитусом.

На микрофотографиях поверхности (рис. 8а, 8б) образца **23** исследованной системы $Cs_2O-Al_2O_3$, содержащего 33 мол. % Cs_2O , полученного методом глицин-нитратного горения и окристаллизованного при 973 К при изотермической выдержке в течение 15 ч, видны кубические кристаллиты с выраженным габитусом, образующие агломераты размером 40–60 мкм. На микрофотографии этого образца, полученной при увеличении до 1 мкм, различимы кристаллиты кубической формы с гранями 1.5–2.0 мкм, более крупные кристаллиты в форме параллелепипеда с гранями a = 0.5– 1.5, b = 2–2.8 мкм, а также кристаллиты неправильной геометрической формы и размером менее 2.5 мкм.

Элементный анализ всех полученных образцов исследованной системы, приведенных в табл. 1, проводили методом рентгенофлуоресцентной спектроскопии. На рис. 9 представлен энергодис-

персионный спектр одного из образцов. Во всех образцах обнаружены только характеристические линии цезия и алюминия. Наблюдаемые в спектре характеристические линии родия относятся к материалу анода прибора, на котором проводили анализ.

В табл. 3 представлены результаты определения элементного состава образцов керамики, полученных на основе системы $Cs_2O-Al_2O_3$ стандартным твердофазным синтезом и методом глицин-нитратного горения с последующей термической обработкой шихты при различных условиях (температура, время).

При прокаливании шихты, полученной твердофазным методом, при температуре 1373 К в течение 10 ч (образцы 7, 14) наблюдалось полное испарение цезия из реакционной смеси, и, как следствие, в спектрах этих образцов присутствуют только характеристические линии алюминия. На дифрактограммах этих образцов также идентифицируется только одна хорошо окристаллизованная фаза, принадлежащая α-Al₂O₃. Таким об-

Рис. 9. Энергодисперсионный спектр образца, содержащего 20 мол. % Cs₂O и 80 мол. % Al₂O₃, полученного методом глицин-нитратного горения.

Таблица З.	Результаты рентгенофлуоресцентного а	нализа образцов системы Cs ₂ O	$-Al_2O_3$

Метод синтеза		Условия прокаливания		Соотношение Cs_2O : Al_2O_3 по анализу, мол. %		
			<i>Т</i> , К	τ, ч	Cs ₂ O	Al_2O_3
Соотношение	20:80	Твердофазный	873	10	20.18 ± 0.33	79.82 ± 1.20
Cs_2O : Al_2O_3 по			973	15	20.13 ± 0.30	79.87 ± 1.20
синтезу, мол. %			973	365	19.93 ± 0.30	80.07 ± 1.20
			973	870	19.92 ± 0.30	80.08 ± 1.20
			1073	10	19.97 ± 0.30	80.03 ± 1.20
			1373	10	0	100
		Глицин-нитратный	873	10	20.42 ± 0.31	79.58 ± 1.20
			973	15	20.14 ± 0.30	79.86 ± 1.20
			973	365	19.62 ± 0.29	80.38 ± 1.20
			973	870	19.84 ± 0.30	80.16 ± 1.20
			1073	10	19.91 ± 0.30	80.09 ± 1.20
	33:67	Твердофазный	873	10	33.80 ± 0.51	66.20 ± 0.993
			973	15	33.75 ± 0.51	66.25 ± 0.99
			973	365	33.28 ± 0.50	66.72 ± 1.00
			973	870	30.02 ± 0.45	69.98 ± 1.05
			1073	10	31.84 ± 0.48	68.16 ± 1.02
			1373	10	0	100
		Глицин-нитратный	873	10	33.88 ± 0.51	66.12 ± 0.99
			973	15	32.95 ± 0.49	67.05 ± 1.00
			973	365	32.19 ± 0.48	67.81 ± 1.02
			973	870	33.92 ± 0.51	66.07 ± 0.99
			1073	10	33.45 ± 0.50	66.55 ± 0.10

разом, температура синтеза, равная 1373 К, является слишком высокой для получения оксидной керамики на основе системы Cs₂O–Al₂O₃.

Следует подчеркнуть, что вне зависимости от выбранного метода синтеза образцы керамики на основе системы $Cs_2O-Al_2O_3$, содержащие 20 и 33 мол. % оксида цезия, полученные при более низких температурах, в рамках погрешности метода содержат заданное количество Cs_2O .

ЗАКЛЮЧЕНИЕ

Рассмотрены условия синтеза образцов керамики на основе системы Cs₂O-Al₂O₃ с содержанием оксила цезия 20 и 33 мол. % метолами стандартного твердофазного синтеза и глицин-нитратного горения при различных условиях изотермической выдержки. Установлено, что термическая обработка шихты при температуре 773 К недостаточна, и на дифрактограммах образцов помимо рентгеноаморфной фазы обнаруживаются дифракционные пики. характерные для фаз непрореагировавших веществ. Прокаливание шихты при температуре 1373 К приводит к полному испарению цезия из образцов. В результате исследования фазового состава, элементного состава методом рентгенофлуоресцентного анализа и морфологии поверхности синтезированных образцов установлено, что для получения образцов системы Cs₂O-Al₂O₃ целесообразно использовать метолы станлартного тверлофазного синтеза и глицин-нитратного горения. При этом оптимальными условиями термической обработки шихты для получения образцов на основе системы Cs₂O–Al₂O₃ являются температура 973 К и время прокаливания 365 ч при использовании стандартного твердофазного метода и 870 ч при синтезе методом глицин-нитратного горения.

БЛАГОДАРНОСТЬ

Авторы выражают признательность сотрудникам ресурсных центров "Рентгенодифракционные методы исследования", "Инновационные технологии композитных наноматериалов", "Геомодель" научного парка Санкт-Петербургского государственного университета.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Минобразования (грант № 075-15-2021-1383).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Prins R.* // J. Catal. 2020. V. 392. P. 336. https://doi.org/10.1016/j.jcat.2020.10.010
- Busca G. // Prog. Mater. Sci. 2019. V. 104. P. 215. https://doi.org/10.1016/j.pmatsci.2019.04.003
- Meephoka C., Chaisuk C., Samparnpiboon P., Praserthdam P. // Catal. Commun. 2008. V. 9. P. 546. https://doi.org/10.3390/cryst11060690
- 4. Shreyas P.S., Mahesh B.P., Rajanna S., Rajesh N. // Mat. Tood. Proc. 2021. V. 45. P. 429. https://doi.org/10.1016/j.matpr.2020.12.1012
- 5. Подзорова Л.И., Ильичёва А.А., Пенькова О.И. и др. // Неорган. материалы. 2019. Т. 55. С. 671. https://doi.org/0.1134/S0002337X19060125
- Chaitree W., Jiemsirilers S., Mekasuwandumrong O. et al. // Catal. Today. 2011. V. 164. P. 302. https://doi.org/10.1016/j.cattod.2010.11.004
- Tsybulya S.V., Kryukova G.N. // Phys. Rev. B. 2008. V. 77. P. 024112. https://doi.org/10.1103/PhysRevB.77.024112
- Paglia G., Buckley C.E., Rohl A.L. et al. // Phys. Rev. B. 2003. V. 68. P. 144110. https://doi.org/10.1103/PhysRevB.68.144110
- Rudolph M., Motylenko M., Rafaja D. // IUCrJ. 2019. V. 6. P. 116. https://doi.org/10.1107/S2052252518015786
- Marí B., Singh K.C., Moya M. et al. // Opt. Quant. Electr. 2015. V. 47. P. 1569. https://doi.org/10.1007/s11082-014-9997-9
- Saeed Adel M.N., Al-Gunaid Murad Q.A., Subramani N.K. et al. // Pol.-Plast. Tech. Eng. 2018. V. 57. P. 1188. https://doi.org/10.1080/03602559.2017.1373402
- 12. *McMillan P.F., Grzechnik A., Chotalla H. //* J. Non-Cryst. Solids. 1998. V. 226. № 3. P. 239. https://doi.org/10.1016/S0022-3093(98)00416-5
- Fukumi K., Sakka S., Kokubo T. // J. Non-Cryst. Solids. 1987. V. 93. P. 190. https://doi.org/10.1016/S0022-3093(87)80038-8
- 14. Macleod N., Keel J.M., Lambert R.M. // Catal. Lett. 2003. V. 86. P. 51. https://doi.org/10.1023/A:1022602807322
- Ansari A.A., Khan M.A.M., Khan M.N., Alrokayan S.A. // J. Semicond. 2011. V. 32. P. 1. https://doi.org/10.1088/1674-4926/32/4/043001
- 16. *Guéneau C., Flèche J.L.* // Calphad. 2015. V. 49. P. 67. https://doi.org/10.1016/j.calphad.2015.02.002
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2021. V. 35. P. e9079. https://doi.org/10.1002/rcm.9079
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2021. V. 35. P. e9097. https://doi.org/10.1002/rcm.9097
- Каймиева О.С., Сабирова И.Э., Буянова Е.С., Петрова С.А. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1211. https://doi.org/10.31857/S0044457X22090057

- 20. *Медведева А.Е., Махонина Е.В., Печень Л.С. и др. //* Журн. неорган. химии. 2022. Т. 67. № 7. С. 896. https://doi.org/10.31857/S0044457X22070157
- Babaev E.V. // Russ. J. Gen. Chem. 2010. V. 80. P. 2590. https://doi.org/10.1134/S1070363210120261
- O'Donnell M.J., Zhou C., Scott W.L. // J. Am. Chem. Soc. 1996. V. 118. P. 6070. https://doi.org/10.1021/ja9601245
- 23. Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П., Кузнецов Н.Т. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1359. https://doi.org/10.31857/S0044457X22600736
- 24. Томилин О.Б., Мурюмин Е.Е., Фадин М.В., Щипакин С.Ю. // Журн. неорган. химии. 2022. Т. 67. № 4.

C. 457.

https://doi.org/10.31857/S0044457X22040195

25. *Wang J., Zhao H., Wen Y.* // Electrochim. Acta. 2013. V. 113. P. 679.

https://doi.org/10.1016/j.electacta.2013.09.086

- 26. Журавлев В.Д., Васильев В Г., Владимирова Е.В. и др. // Физ. хим. стекла. 2010. Т. 36. № 4. С. 632. https://doi.org/10.1134/S1087659610040164
- 27. *Cardarelli F.* Materials handbook. London: Springer-Verlag, 2008. P. 600.
- Zhou R.-S., Snyder R. // Acta Crystallogr., Sect. B: Struct. Sci. 1991. V. 47. P. 617. https://doi.org/10.1107/S0108768191002719
- 29. Langlet G. // C. R. Acad. Sci. 1964. V. 259. P. 3769.