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Dynamical polarization of nuclear spins by acceptor-bound holes in a zinc-blende semiconductor
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The ground state of an acceptor-bound hole in a zinc-blende semiconductor is formed by four eigenstates of
the total angular momentum, which is a vector sum of spin and orbital moment of the hole. As a result, the
hyperfine interaction of the hole with lattice nuclei becomes anisotropic and coordinate dependent. We develop a
theory of dynamic polarization of nuclear spins by the acceptor-bound hole, giving full account for its complex
spin structure. The rate of hole-nuclear flip-flop transitions is shown to depend on the angle between the total
angular momentum of the hole and the position vector of the nucleus with respect to the acceptor center. The
resulting spatially inhomogeneous spin polarization of nuclei gives rise to nonequidistant spin splitting of the
hole, which can be detected by methods of optical or microwave spectroscopy.
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I. INTRODUCTION

The dynamical polarization of spins of the nuclei which
constitute the crystal lattice of a semiconductor has been
known since the pioneering paper by Lampel.1 As a rule, it
originates from the Fermi contact interaction binding the nu-
clear spins with spins of the conduction-band electrons whose
wave functions are formed by the s-type atomic orbitals. Holes
in the valence band, formed usually by the p-type orbitals,
also interact with the nuclear spins. However, this interaction
is about one order of magnitude weaker, since the density of
the p-electron wave function turns to zero at a position of
the nucleus.2–4 This circumstance, together with the strong
spin-orbit coupling in the valence band leading to fast spin
relaxation of the free holes, substantially weaken the effects of
the hole-nuclear interaction. Until recently, these effects were
usually neglected against the background of the pronounced
electron effects. In recent papers5–7 the hyperfine splitting of
the localized states of holes in semiconductor quantum dots
was experimentally measured and theoretically calculated. The
role of holes in the dynamical polarization of nuclei in quantum
dots was also theoretically considered.8 Note that as a rule, the
light-hole states in quantum dots are split off because of both
the confinement and the strain, so that the ground state of the
hole is the Kramers doublet formed mainly by the heavy-hole
subband states.

The holes localized by a spherically symmetric potential
(e.g., on an acceptor center or in a spherical nanocrystal) pos-
sess a much more complex and interesting spin structure.9–13

The ground state is fourfold degenerate, and its basis functions
are the eigenfunctions of the total angular momentum formed
by the vector summation of the spin and the orbital moment
of the localized hole. As a result, the matrix elements and the
average value of the spin moment operator become coordinate
dependent. Manifestations of the complex structure of the
acceptor center in the spin-spin interactions were theoretically
studied for the case of a diluted magnetic semiconductor,
where they lead to a nontrivial geometry of the spin ordering
of localized spin moments within the magnetic polaron.14,15

In the present paper, the problem of dynamical polarization
of nuclei by the acceptor-bound hole is treated theoretically.
The rate of pumping of nuclear spins and the steady-state

polarization of the nuclei is calculated as a function of
coordinates in the vicinity of the acceptor center in a GaAs-
type semiconductor. The splitting of the four ground-state
sublevels of the acceptor, induced by the interaction with the
dynamically polarized nuclei, is shown to be nonequidistant.
This makes the notion of the effective Overhauser field not
quite applicable. Possible experiments aimed at the observa-
tion of the effect are discussed.

II. GENERAL CONSIDERATIONS

A. Hyperfine interaction of the hole

In the general form, the Hamiltonian of the spin-spin
interaction between the hole with the angular momentum
J=3/2 and a localized spin (particularly, the nuclear spin �I )
can be written as15

H̃S = a(ρ)( �J · �I ) + b(ρ)( �J · �ρ)2( �J · �I ) + c(ρ)( �J · �ρ)( �ρ · �I )

+ d(ρ)( �J · �ρ)3( �ρ · �I ), (1)

where �ρ is the position vector of the nucleus with respect to
the localization center of the valence-band orbital.

As shown in Ref. 4, the hyperfine coupling of the hole is
determined, to within a 1% precision, by the interaction with
the nucleus at which the atomic orbitals of the valence-band
electron are centered. For this interaction, the position vector
�ρ equals zero, and only the first term in Eq. (1) remains:

H̃SC = a( �J · �I ). (2)

Hence in this approximation, the hyperfine coupling of the
hole takes a scalar form, no matter that it has a magnetodipole
origin. The interaction constant a can be found by a direct
calculation of any matrix element of the Hamiltonian of the
magnetodipole interaction with the Bloch functions of the
valence band. As shown in Appendix A, it is equal to

a = 64

45
π

μBμI

I
℘, (3)

where μB and μI stand for the Bohr magneton and the nuclear
magneton, respectively, ℘ = ∫∞

0 u2(ρ)ρdρ, and u(ρ) denotes
the radial part of the Bloch function of the valence-band
electron.
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B. Spin structure of the acceptor and
dynamical polarization of nuclei

Due to the strong spin-orbit interaction in the valence
band, neither the spin �J nor the orbital moment �L of the
acceptor-bound hole is a conserving value. In the spherical
approximation (i.e., neglecting terms of the fourth power in the
wave vector, which cause the cubic-symmetry corrugation of
the valence band), the acceptor ground state, being degenerate
at zero magnetic field, corresponds to a definite value of the
total angular momentum �F = �J + �L (usually F = 3/2), while
its basis functions correspond to definite projections of �F ,
M = Fz.9,10 If an external force (e.g., optical pumping) drives

the distribution of acceptors over the directions of the vector
�F off the equilibrium, the hyperfine interaction leads to the

transfer of angular momentum and energy into the nuclear-spin
system, causing the dynamical polarization of the nuclear
spins.16,17 Following Chap. 5 of Ref. 16, we consider the
vector �j (�r) which describes the flux of the angular momentum
into the nuclear-spin system at a position �r . We shall restrict
our consideration to the case of weak spin polarizations, for
which the hole spin-density matrix P̂ is fully determined by
the vector 〈δ �F 〉 = 〈 �F − �FT 〉, where �FT is the thermodynamic
equilibrium value of the total moment of the acceptor,
so that

PMM ′ ≈ 1

2F + 1

[
δMM ′ + 3

F (F + 1)

(〈δF 〉xF̂ X
MM ′ + 〈δF 〉yF̂ Y

MM ′ + 〈δF 〉zF̂ Z
MM ′

)]

= 1

4

[
δMM ′ + 4

5

(〈δF 〉xF̂ X
MM ′ + 〈δF 〉yF̂ Y

MM ′ + 〈δF 〉zF̂ Z
MM ′

)]
. (4)

In this case, �j (�r) should be linear in 〈δ �F 〉. Due to the spherical
symmetry of the acceptor state and the time-reversal symmetry,
this relation has the following general form:

�j = f1(r,B)〈δ �F 〉 + f2(r,B)(�r · 〈δ �F 〉)�r + f3(r,B)( �B · 〈δ �F 〉) �B
+ f4(r,B)(�r · 〈δ �F 〉)(�r · �B) �B + f5(r,B)( �B · 〈δ �F 〉)(�r · �B)�r.

(5)

To obtain a considerable spin polarization of nuclei, the decay
of the nonequilibrium nuclear spin on a time scale of the
nuclear spin-spin interactions T2 must be suppressed. This
is achieved by application of an external magnetic field,
converting the flux of angular momentum into the flux of
energy.16,17 In what follows, we shall consider the simplest
arrangement where the nonequilibrium angular momentum
of the hole is directed along the external field, while this
latter field is stronger than the local magnetic fields the nuclei
produce on each other. Then the spin component directed
along the external magnetic field is introduced into the nuclear
system and persists for a relatively long spin-lattice relaxation
time T1 (which is determined, at low temperatures, by the same
interaction with the hole). The remaining spin components
quickly vanish, so that their average values are negligible.
Thus the only important component of the spin flux will be
that parallel to the magnetic field (whose direction is a natural
choice of the Z axis). Using Eq. (5), one can express it in the
following form:

jz = A(r,B)〈δF 〉 + B(r,B)〈δF 〉r2 cos2 θ, (6)

where 〈δF 〉 is the length of the vector 〈δ �F 〉 directed along Z,
while θ is the angle between the Z axis and the position vector
�r . The functions A and B are defined as A(r,B) = f1(r,B) +
f3(r,B)B2 and B(r,B) = f2(r,B) + [f4(r,B) + f5(r,B)]B2.

Similar considerations allow one to obtain the expression
for the spin flux related to the relaxation of the nuclear
magnetization on the acceptor-bound hole:

j̃z = Ã(r,B)〈Iz(r,θ)〉 + B̃(r,B)〈Iz(r,θ)〉r2 cos2 θ, (7)

where 〈Iz(r,θ)〉 stands for the mean Z projection of the nuclear
spins at a point specified by spherical coordinates (r,θ).

Therefore, seeking for a coordinate dependence of jz(�r),
it is sufficient to calculate, at the given magnetic field, two
functions of the distance from the acceptor center, A(r,B) and
B(r,B). One can perform it, e.g., by calculating jz(�r) at �r‖ �B
and �r⊥ �B. The same is true for j̃z(�r), with functions Ã(r,B)
and B̃(r,B).

III. THE STEADY STATE OF THE OPTICALLY PUMPED
SYSTEM OF THE ACCEPTOR AND NUCLEI

A. Calculation of the generation and relaxation spin fluxes

We shall assume throughout that the correlation time
of the hole angular momentum, τc, determined by pho-
toexcitation and/or interaction with phonons, is short
(
∑

i 〈V 2
iMM ′mm′ 〉τ 2

c /h̄2 
 1, where ViMM ′ stands for the matrix
element of the transition between hole spin sublevels M and
M ′ due to hyperfine interaction with the ith nucleus; angular
brackets denote averaging over the initial spin states of nuclei,
m). This condition means that the hole spin state is not
considerably changed by the action of the fluctuating effective
fields of nuclei during the correlation time, and therefore the
rate of transitions with the spin flip of a certain nucleus is
not affected by the hole’s interaction with the other nuclei.
The above assumption, which is often valid for donor-bound
electrons,18 is even more justified for holes due to their weaker
hyperfine coupling. Within this approximation of short τc,
the rate of transitions between hole sublevels M and M ′,
accompanied by the transition between states m and m′ of
the ith nucleus, as a function of the magnetic field, can be
calculated as16

wiMM ′mm′ = h̄−2V 2
iMM ′mm′τc

1 + γ 2
h (M − M ′)2B2τ 2

c

, (8)

where γh is the gyromagnetic ratio of the hole. Depending on
the strength of the external magnetic field, one can consider
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two distinct regimes of dynamic nuclear polarization. In the
weak-field regime (Bγhτc 
 1), the transition rate is field
independent and proportional to the correlation time:

wiMM ′mm′ = h̄−2V 2
iMM ′mm′τc. (9)

In the strong-field regime (Bγhτc � 1), the transition rate is
inversely proportional to the correlation time (i.e., directly
proportional to the homogeneous width of the hole sublevels
2πh̄/τc):

wiMM ′mm′ = h̄−2V 2
iMM ′mm′γ

−2
h (M − M ′)−2B−2τ−1

c . (10)

Kinetics of the mean Z projection of ith nuclear spin is given
by the equation

d
〈
I i
z

〉
dt

=
∑

M,M ′,m,m′
wiMM ′mm′ph

MpN
m (m′ − m), (11)

where ph
M and pN

m are occupation probabilities of hole and
nuclear-spin states, correspondingly, while the rates wiMM ′mm′

are determined by either Eq. (9) or Eq. (10), depending on the
external field strength.

Using the hole spin-density matrix given by Eq. (4), and
assuming analogous statistical distribution of the nuclear spin,
we get

d
〈
I i
z

〉
dt

= 1

2F + 1

1

2I + 1

∑
M,M ′,m,m′

wiMM ′mm′

[
1 + 3〈δF 〉

F (F + 1)
M

][
1 + 3〈Iz〉

I (I + 1)
m

]
(m′ − m)

≈ 1

2F + 1

1

2I + 1

∑
M,M ′,m,m′

wiMM
′
mm′

[
3〈δF 〉

F (F + 1)
M + 3〈Iz〉

I (I + 1)
m

]
(m′ − m). (12)

Here we made use of the smallness of 〈δF 〉 and 〈Iz〉 as well as of the relation wiMM ′mm′ = wiM ′Mm′m.
As shown in the previous section, due to the symmetry of the problem it is sufficient to calculate the generation and relaxation

of the mean nuclear spin along two directions: along 〈δ �F 〉 and perpendicular to it. The complete wave functions of the acceptor
ground state with the angular momentum projections M = ±3/2, ± 1/2 are given in Appendix B. The radial dependence of the
envelope functions is determined by combinations of functions R0 = R0(R) and R2 = R2(R), while their angular dependence—by
spherical harmonics. In the longitudinal direction, �R‖〈δ �F 〉 (θ = 0), the latter are reduced to Y0,0 = 1/

√
4π , Y2,0 = −√5/4π ,

Y2,±1 = Y2,±2 = 0, so one obtains from Eq. (B1),

ψ±3/2 = 1√
4π

u±3/2R−, ψ±1/2 = 1√
4π

u±1/2R+, (13)

where R+ = R0 + R2, R− = R0 − R2, and the Bloch functions u±3/2, u±1/2 are defined in Appendix A.
The interaction of holes with nuclei at the primitive-cell level is considered in detail in Appendix A. Using Eq. (A9) (which

is the matrix representation of the general spin Hamiltonian Eq. (2) in the basis of the valence-band Bloch functions), one
immediately obtains the matrix elements of the hyperfine interaction calculated with the acceptor functions, Eq. (13):

〈
M |Ĥdd |
M ′ 〉 = 8

15

μBμI

I
℘

⎛
⎜⎜⎜⎜⎜⎝

R2
−Îz

R+R−√
3

Î− 0 0
R+R−√

3
Î+

R2
+

3 Îz
2
3R2

+Î− 0

0 2
3R2

+Î+ −R2
+

3 Îz
R+R−√

3
Î−

0 0 R+R−√
3

Î+ −R2
−Îz

⎞
⎟⎟⎟⎟⎟⎠ . (14)

In the transverse direction, �R⊥〈δ �F 〉 (θ = π/2, and choosing φ = 0 without loss of generality), the spherical harmonics reduce
to Y0,0 = 1/

√
4π , Y2,0 = −√5/16π , Y2,±1 = 0, Y2,±2 = −√5/32π . Now each of the acceptor wave functions is a linear

combination of two Bloch amplitudes:

ψ±3/2 = 1√
4π

(
R̃+u±3/2 −

√
3

2
R2u∓1/2

)
, ψ±1/2 = 1√

4π

(
R̃−u±1/2 −

√
3

2
R2u∓3/2

)
, (15)

where R̃+ = R0 + R2/2, R̃− = R0 − R2/2. In the end, instead of Eq. (14), one obtains

〈
M |Ĥdd |
M ′ 〉 = 8

15

μBμI

I
℘

⎛
⎜⎜⎜⎜⎜⎜⎝

(
R̃2

+ − R2
2

4

)
Îz

R2
0√
3
Î− − R̃−R2√

3
Î+ −R+R2√

3
Îz

R2
2

2 Î+ − R̃+R2Î−
R2

0√
3
Î+ − R̃−R2√

3
Î−

(
R̃2

−
3 − 3R2

2
4

)
Îz

2
3 R̃2

−Î− − R̃−R2Î+
R+R2√

3
Îz

−R+R2√
3

Îz
2
3 R̃2

−Î+ − R̃−R2Î− −
(

R̃2
−

3 − 3R2
2

4

)
Îz

R2
0√
3
Î− − R̃−R2√

3
Î+

R2
2

2 Î− − R̃+R2Î+
R+R2√

3
Îz

R2
0√
3
Î+ − R̃−R2√

3
Î− −

(
R̃2

+ − R2
2

4

)
Îz

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

Matrix elements ViMM ′mm′ are then calculated from Eqs. (14) and (16) using well-known matrices of raising (lowering) spin
operators Î+ (Î−) and taking coordinate functions of the hole at the nucleus position �ri . The calculated matrix elements go to
either Eq. (9) or Eq. (10), depending on the value of the external magnetic field B as discussed above; then Eq. (12) gives the
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kinetic equations for 〈Iz(R)〉. In what follows we consider for
simplicity the case of GaAs, where all the nuclei possess spin
3/2.

The resulting equations connect, for each of the two
principle directions, the mean nuclear spin at a distance R from
the acceptor (〈Iz(R)〉) and the mean nonequilibrium angular
momentum of the acceptor-bound hole 〈δ �F 〉. For �R‖〈δ �F 〉
(θ = 0) we proceed from Eq. (14) and obtain

d〈Iz〉
dt

∝ 20

3
R2

+

(
R2

− − 2

3
R2

+

)
(〈δF 〉 − 〈Iz〉) (17)

(for both the weak- and strong-field regimes), i.e., generation
and relaxation of the nuclear spin have the same dependence
on R.

For �R⊥〈δ �F 〉 (θ = π/2) we proceed from Eq. (16) and
obtain

d〈Iz〉
dt

∝ 10〈δF 〉
[

2

3
R4

0 − 3

4
R4

2 + 4

9
R̃4

− + 3R̃2
+R2

2 − 5

3
R̃2

−R2
2

]

− 10〈Iz〉
[

2

3
R4

0 + 1

4
R4

2 + 4

9
R̃4

− + R̃2
+R2

2 + 5

3
R̃2

−R2
2

]
,

(18)

for the weak-field regime and

d〈Iz〉
dt

∝ 10〈δF 〉
[

2

3
R4

0 − 3

36
R4

2 + 4

9
R̃4

− + 3R̃2
+R2

2

9
− 5

3
R̃2

−R2
−2

]

− 10〈Iz〉
[

2

3
R4

0 + 1

36
R4

2 + 4

9
R̃4

− + R̃2
+R2

2

9
+ 5

3
R̃2

−R2
2

]
,

(19)

for the strong-field regime. One can see that in the transversal
direction, radial dependences of the generation and relaxation
of the nuclear spin appear to be different. The specific behavior
of the radial dependences for the two principle directions and
a parameter set of GaAs are depicted in Fig. 1(a) for the weak-
field regime and in Fig. 2(a) for the strong-field regime.

B. Steady-state distribution of the mean nuclear spin

Consider the situation where an external action (e.g., the
optical pumping) maintains a stationary value of 〈δF 〉. This
establishes a stationary spatial distribution of the mean nuclear
spin. In order to find it, we use the symmetry considerations of
Sec. II. In the steady state, the generation and recombination
fluxes should balance each other. Equating the right-hand sides
of Eqs. (6) and (7), one obtains

〈Iz(R,θ )〉 = A(R) + B(R)R2 cos2 θ

Ã(R) + B̃(R)R2 cos2 θ
〈δF 〉. (20)

Comparing Eq. (20) with either Eqs. (17) and (18) (for the
weak-field regime) or Eqs. (17) and (19) (for the strong-field
regime), one obtains explicit expressions for A,B,Ã,B̃.
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FIG. 1. (Color online) Hyperfine interaction of the acceptor-
bound hole and nuclear polarization in the weak-field regime (see
text). (a) Radial dependences of the rates of generation and relaxation
of the nuclear spin in the vicinity of the acceptor center: along the
Z direction (curve 1; dependences for generation and relaxation
coincide) and in the perpendicular direction (curves 2 and 3 almost
merge in the scale of the figure). R=1 corresponds to the length
12.5 Å for GaAs (effective Bohr radius calculated with the heavy-hole
mass). The inset shows how the ratio of the generation and relaxation
efficiencies behaves at larger distances from the acceptor (solid
curve). For comparison, the radial densities of the wave functions
R2

0R
2 (dashed line) and R2

2R
2 (dotted line) are shown. One can see

that the efficiency ratio deviates from unity together with the onset of
the R2 orbital. (b) Map of the steady-state nuclear polarization in the
vicinity of the acceptor (meridional cross section). Numbers at the
concentric circles indicate distances R from the acceptor center.

For the weak-field regime (Bγhτc 
 1),

A = 10
[

2
3R4

0 − 3
4R4

2 + 4
9 R̃4

− + 3R̃2
+R2

2 − 5
3 R̃2

−R2
2

]
,

BR2 = 20
3 R2

+
(
R2

− − 2
3R2

+
)

− 10
[

2
3R4

0 − 3
4R4

2 + 4
9 R̃4

− + 3R̃2
+R2

2 − 5
3 R̃2

−R2
2

]
,

(21)
Ã = 10

[
2
3R4

0 + 1
4R4

2 + 4
9 R̃4

− + R̃2
+R2

2 + 5
3 R̃2

−R2
2

]
,

B̃R2 = 20
3 R2

+
(
R2

− − 2
3R2

+
)

− 10
[

2
3R4

0 + 1
4R4

2 + 4
9 R̃4

− + R̃2
+R2

2 + 5
3 R̃2

−R2
2

]
.
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FIG. 2. (Color online) The same as in Fig. 1 but for the strong-
field regime (see text).

For the strong-field regime (Bγhτc � 1),

A = 10

[
2

3
R4

0 − 3

36
R4

2 + 4

9
R̃4

− + 3R̃2
+R2

2

9
− 5

3
R̃2

−R2
2

]
,

BR2 = 20

3
R2

+

(
R2

− − 2

3
R2

+

)

− 10

[
2

3
R4

0 − 3

36
R4

2 + 4

9
R̃4

− + 3R̃2
+R2

2

9
− 5

3
R̃2

−R2
2

]
,

Ã = 10

[
2

3
R4

0 + 1

36
R4

2 + 4

9
R̃4

− + R̃2
+R2

2

9
+ 5

3
R̃2

−R2
2

]
,

B̃R2 = 20

3
R2

+

(
R2

− − 2

3
R2

+

)

− 10

[
2

3
R4

0 + 1

36
R4

2 + 4

9
R̃4

− + R̃2
+R2

2

9
+ 5

3
R̃2

−R2
2

]
.

(22)

Particularly, in the longitudinal direction, for both regimes,

〈Iz〉 = 〈δF 〉, (23)

i.e., the nuclear polarization does not depend on R at all.
Certainly, this result is valid only up to distances at which one
can neglect channels of the relaxation of the nuclear spin other
than the interaction with the hole.

In the transverse direction,

〈Iz〉 = 〈δF 〉
[

2
3R4

0 − 3
4R4

2 + 4
9 R̃4

− + 3R̃2
+R2

2 − 5
3 R̃2

−R2
2

]
[

2
3R4

0 + 1
4R4

2 + 4
9 R̃4− + R̃2+R2

2 + 5
3 R̃2−R2

2

] (24)

in the weak-field regime and

〈Iz〉 = 〈δF 〉
[

2
3R4

0 − 3
36R4

2 + 4
9 R̃4

− + 3R̃2
+R2

2
9 − 5

3 R̃2
−R2

2

]
[

2
3R4

0 + 1
36R4

2 + 4
9 R̃4− + R̃2+R2

2
9 + 5

3 R̃2−R2
2

] (25)

in the strong-field regime.
Maps of the steady-state nuclear polarization are presented

in Figs. 1(b) and 2(b). Very close to the acceptor, the nuclear
polarization distribution is almost spherically symmetric, but
at a distance the distribution becomes anisotropic.

C. Splitting of the acceptor sublevels via the interaction with
polarized nuclei

Suppose the polarized acceptor-bound holes have created
the steady-state nuclear polarization, as given by Eq. (20).
Let us calculate the energy splitting of the acceptor ground
state by means of its interaction with the polarized nuclei. We
make use of the complete expressions of the acceptor wave
functions, Eq. (B1), and the matrix, Eq. (A9), but keep only
the contributions containing Îz, since the contributions to the
energy from the terms containing Î+ and Î− are equal to zero
on average.

This way, one obtains

〈
M |Ĥdd |
M ′ 〉

= 32

15
π

μBμI

I
℘Îz

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
A2

+ + C2

3 − D2

3

)
−
(
A+C + A−C

3

)
e−iφ −

(
A+D − A−D

3

)
e−2iφ 2

3CDe−3iφ

−
(
A+C + A−C

3

)
e+iφ

(
A2

−
3 + C2 − D2

)
2CDe−iφ

(
A+D − A−D

3

)
e−2iφ

−
(
A+D − A−D

3

)
e+2iφ 2CDe+iφ −

(
A2

−
3 + C2 − D2

)
−
(
A+C + A−C

3

)
e−iφ

2
3CDe+3iφ

(
A+D − A−D

3

)
e+2iφ −

(
A+C + A−C

3

)
e+iφ −

(
A2

+ + C2

3 − D2

3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(26)
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where

A+ = R0√
4π

+ R2√
16π

(1 − 3 cos2 θ ),

A− = R0√
4π

− R2√
16π

(1 − 3 cos2 θ ), (27)

C =
√

3

4π
R2 sin θ cos θ, D =

√
3

16π
R2 sin2 θ.

Then one should add together the contributions from all the
nuclei, i.e., in fact, integrate over R,θ,φ with the spatially
inhomogeneous nuclear polarization Eq. (20). As a result,
all the off-diagonal matrix elements Eq. (26) turn to zero
after integration over φ. This means that the projection of
the total angular momentum of the acceptor-bound hole
remains a good quantum number for classification of the split
sublevels. However, the pattern of the split levels appears to
be somewhat unusual—not like the splitting caused by an
external magnetic field or by homogeneously polarized nuclei.
Averaging of the diagonal matrix elements Eq. (26) reveals
that the separation between the sublevels M = ±3/2 and that
between the sublevels M = ±1/2 are not in the customary
ratio 3:1. In other words, the splitting of the acceptor ground
state via the interaction with the nuclear polarization appears
to be nonequidistant, and, strictly speaking, the action of the
nuclei onto the acceptor center cannot be described in terms
of the Overhauser field. For the specific parameters of GaAs,
the ratio of the spin splittings of holes M = ±3/2 and of holes
M = ±1/2 equals 3.43 in the weak-field regime (Bγhτc 
 1)
and 2.73 in the strong-field regime (Bγhτc � 1).

IV. POSSIBLE METHODS OF EXPERIMENTAL
OBSERVATION OF THE DYNAMICAL POLARIZATION

OF NUCLEI BY THE ACCEPTOR-BOUND HOLES

The most efficient method of the dynamical polarization of
nuclei via the interaction with the conduction-band electrons
is the creation of a nonequilibrium orientation of the electron
spins by means of the optical pumping16 or spin injection.19,20

For holes, this method is possible in principle but hindered
by the fast spin relaxation of free holes in the valence band.16

One possible way to surmount this difficulty is using resonant
optical pumping of the acceptor levels by circularly polarized
light. Another possible approach involves the Overhauser
effect, i.e., creation of the nonequilibrium angular momentum
of holes by means of their depolarization, performed either
by a nonpolarized light or by microwaves.21 In such an
experiment, one ought to apply a rather strong magnetic field
and maintain the sample at a low temperature, in order to
achieve a significant equilibrium value of the mean angular
momentum of the acceptor-bound holes.

In any of the proposed experiments, the nonequidistant
splitting of the acceptor levels will become a key distinctive
feature. The spin-flip Raman scattering and the electron-spin
resonance are adequate experimental techniques for observa-
tion of the effect. The magnetic resonance technique combines
well with the dynamical nuclear polarization through the
Overhauser effect, since the latter implies a noticeable equi-
librium polarization of holes whose resonant breakdown by
the microwave field can be conveniently detected through the

change of the circular polarization degree of the luminescence
(in fact, a kind of optically detected magnetic resonance).

V. CONCLUSIONS

We have addressed the problem of acceptor-bound holes
in a cubic semiconductor which polarize spins of the crystal
lattice nuclei by means of the dipole-dipole interaction. We
have shown that this interaction is scalar; though, in contrast
with the hyperfine interaction of conduction-band electrons,
it does not have a contact form. We have considered the
experimental design with an external magnetic field applied,
which is stronger than the local dipole-dipole fields of the
neighboring nuclei, and a nonequilibrium polarization of the
angular momentum of acceptor-bound holes created along
this field by some external force such as optical pumping or
microwave power. We calculated coordinate dependences of
the rate of polarization of the nuclear-spin system and of the
rate of relaxation of nonequilibrium nuclear spins by means
of their interaction with the hole. Two regimes were shown
to result from the model, depending on the relation between
the Zeeman splitting of hole sublevels, driven by the value of
the applied magnetic field, and the homogeneous width of these
sublevels, controlled by the spin correlation time of the hole.
For both the weak-field and the strong-field regimes, we have
found steady-state distributions (maps) of the nuclear-spin
polarization as well as splitting patterns of the sublevels of
the acceptor state.

The steady-state spatial distribution of the nuclear po-
larization turns out to be essentially anisotropic, including
distances comparable to the localization radius of the acceptor-
bound hole. This anisotropy results in the nonequidistance
of sublevels of the net angular momentum of the acceptor
interacting with spin-polarized nuclei. The nonequidistance
can experimentally manifest itself, for instance, in spin-flip
Raman scattering, thus being a key observable in the problem.
Hence, it is important to make sure that other channels of
relaxation of the nuclear-spin system (spin diffusion in the
first place) are not able to smear out the anisotropy in the
nuclear-spin distribution and to destroy the nonequidistance
effect.

Let us evaluate the characteristic time of the diffusive
relaxation of inhomogeneities of the nuclear polarization on
the spatial scale corresponding to R = 5 (nuclear polarization
within this radius makes a dominant contribution to the
acceptor sublevel splitting). It comprises about 60 Å for GaAs.
Adopting, for the diffusion coefficient of the nuclear spin,
the estimate D ∼ 10−13 cm2/s,16 we obtain the diffusion
time τD ≈ 3.6 s. Looking for the characteristic time of the
polarization of nuclei by the holes, we make use of the
evaluation conducted in Ref. 16 for donor-bound electrons
and assume the hyperfine constant ten times smaller than that
for electrons2–4 but the correlation time of the same scale.
Taking into account a stronger localization of the hole on the
acceptor (characteristic radius 20 Å) and a realistic profile
of the hole radial functions (see insets in Figs. 1 and 2), we
obtain for the same distance (60 Å away from the acceptor)
a typical time of the spin transfer by the hole to the nuclear
system: τh ∼ 0.3 s. The inequality τD � τh justifies the model
considered in the present paper.
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APPENDIX A: THE HAMILTONIAN OF THE
MAGNETODIPOLE INTERACTION IN THE

MATRIX REPRESENTATION

The Hamiltonian of the magnetic dipole-dipole interaction
has the form21

Ĥdd = 2μBμI

Iρ3
�̂I ·
[
�̂l − �̂s + 3

�ρ(�̂s · �ρ)

ρ2

]
, (A1)

where �̂l, �̂s, and �ρ are the orbital moment operator, the spin

operator, and position vector of the electron; �̂I is the operator
of the nuclear spin; μB and μI are the Bohr magneton and the
nuclear magneton, respectively.

Let us calculate the matrix elements of this Hamiltonian:

〈um|Ĥdd |um′ 〉 =
∫

d3r · u∗
mĤddum′ ,

(A2)
m = ±3/2, ± 1/2,

with the Bloch functions of the complex valence band,22

u+3/2 = −u(ρ)√
2

(x + iy)↑,

u+1/2 = u(ρ)√
3

[
− 1√

2
(x + iy)↓ +

√
2z↑

]
,

(A3)

u−1/2 = u(ρ)√
3

(
1√
2

(x − iy)↑ +
√

2z↓
)

,

u−3/2 = u(ρ)√
2

(x − iy)↓;

here x,y,z are orbital functions which are transformed as
the respective coordinates; up and down arrows indicate
contributions from the corresponding spin components.

The components of the orbital moment operator l̂ (with
l = 1) are23 3 × 3 matrices,

l̂x =

⎛
⎜⎝

0 1/
√

2 0

1/
√

2 0 1/
√

2

0 1/
√

2 0

⎞
⎟⎠ ,

l̂y =

⎛
⎜⎝

0 −i/
√

2 0

i/
√

2 0 −i/
√

2

0 i/
√

2 0

⎞
⎟⎠ , (A4)

l̂z =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ ,

TABLE I. Action of the orbital moment components onto the
spherical harmonics.

l̂i |l̂i |Y1,+1〉 |l̂i |Y1,0〉 |l̂i |Y1,−1〉
l̂x

1√
2
Y1,0

1√
2
(Y1,+1 + Y1,−1) 1√

2
Y1,0

l̂y
i√
2
Y1,0 − i√

2
(Y1,+1 − Y1,−1) − i√

2
Y1,0

l̂z Y1,+1 0 −Y1,−1

while the components of the spin operator �̂s are Pauli matrices
multiplied by 1/2:

ŝx =
(

0 1/2

1/2 0

)
, ŝy =

(
0 −i/2

i/2 0

)
,

(A5)

ŝz =
(

1/2 0

0 −1/2

)
.

The matrices of the orbital moment are written in the basis of
the spherical functions,

Y1,0 = i

√
3

4π
cos ϑ, Y1,±1 = ∓i

√
3

8π
sin ϑ · e±iϕ, (A6)

so the Bloch functions Eq. (A3) should be transformed to the
same basis. One obtains

u+3/2 = −2i
√

π√
3

ρu(ρ)Y1,+1↑,

u+1/2 = −2i
√

π

3
ρu(ρ)Y1,+1↓ − i

√
8π

3
ρu(ρ)Y1,0↑,

(A7)

u−1/2 = −2i
√

π

3
ρu(ρ)Y1,−1↑ − i

√
8π

3
ρu(ρ)Y1,0↓,

u−3/2 = −2i
√

π√
3

ρu(ρ)Y1,−1↓.

The calculation to follow will require the knowledge of the
result of the action of the angular momentum matrices on
the three spherical harmonics: Y1,0, Y1,±1. It is presented in
Table I. Now one obtains the matrix elements, Eq. (A2),
operating with the Bloch functions, Eq. (A7), and using the
relations

x2

ρ2
= sin2 ϑ cos2 ϕ,

y2

ρ2
= sin2 ϑ sin2 ϕ,

z2

ρ2
= cos2 ϑ,

xy

ρ2
= sin2 ϑ sin ϕ cos ϕ, (A8)

xz

ρ2
= sin ϑ cos ϑ cos ϕ,

yz

ρ2
= sin ϑ cos ϑ sin ϕ.

Integration over ρ, ϑ , and ϕ leads to the following final result:

〈um|Ĥdd |um′ 〉

= 64

45
π

μBμI

I
℘

⎛
⎜⎜⎜⎜⎜⎝

3
2 Îz

√
3

2 Î− 0 0
√

3
2 Î+ 1

2 Îz Î− 0

0 Î+ − 1
2 Îz

√
3

2 Î−

0 0
√

3
2 Î+ − 3

2 Îz

⎞
⎟⎟⎟⎟⎟⎠ , (A9)
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where operators Îz, Î+ = Îx + iÎy , Î− = Îx − iÎy act on the
nuclear spins, while the radial integral ℘ = ∫∞

0 u2(ρ)ρdρ,
determined by the specific radial function u(ρ), can be found
either from comparison with experimental data or from first-
principle numerical calculations.

One can see that the matrix in Eq. (A9) represents the
operator �J · �I , which confirms symmetry considerations that
have led us to Eq. (2) of the main text.

APPENDIX B: WAVE FUNCTIONS OF THE
ACCEPTOR-BOUND HOLE IN THE

COMPLEX VALENCE BAND

Wave functions of the hole with the total angular momentum
3/2, localized at a shallow acceptor in a semiconductor with
a diamondlike crystal lattice and a large spin-orbit splitting of
the valence band, read10

ψ+3/2 = R0Y0,0u+3/2 + 1√
5
R2Y2,0u+3/2

− 2√
10

R2Y2,+1u+1/2 + 2√
10

R2Y2,+2u−1/2,

ψ+1/2 = R0Y0,0u+1/2 + 2√
10

R2Y2,−1u+3/2

− 1√
5
R2Y2,0u+1/2 + 2√

10
R2Y2,+2u−3/2,

ψ−1/2 = R0Y0,0u−1/2 + 2√
10

R2Y2,−2u+3/2

− 1√
5
R2Y2,0u−1/2 + 2√

10
R2Y2,+1u−3/2,

ψ−3/2 = R0Y0,0u−3/2 + 1√
5
R2Y2,0u−3/2

+ 2√
10

R2Y2,−2u+1/2 − 2√
10

R2Y2,−1u−1/2. (B1)

They depend on two radial functions, R0 = R0(R) and R2 =
R2(R), where R stands for the dimensionless distance from the
acceptor center (the same as r but measured in the units of Bohr
radius with the heavy-hole mass, ∼12.5 Å for GaAs). At an
arbitrary ratio of the light-hole mass and the heavy-hole mass,
the functions R0 and R2 have no exact analytical expression. As
shown by Rodina and Averkiev,24,25 the following variational
approximation of these functions works very well:

R0(R) =
√

2[1 + (ζβ)3/2]−1/2

× [R̃0(αR) + (ζβ)3/2R̃0(α
√

ζβR)],
(B2)

R2(R) =
√

2[1 + (ζβ)3/2]−1/2

× [R̃2(αR) − (ζβ)3/2R̃2(α
√

ζβR)],

where

R̃0(x) = α3/2e−x,
(B3)

R̃2(x) = α3/2

[
6

x3
− e−x

(
1 + 3

x
+ 6

x2
+ 6

x3

)]
,

while the values of the variational parameters α and ζ as
functions of the light-to-heavy mass ratio β can be found

by minimization of the total energy.24,25 For instance, for
the case of GaAs, proceeding from the Luttinger param-
eters set of Ref. 26 (γ1 = 6.98, γ2 = 2.06, γ3 = 2.93),
one obtains γ = (2γ2 + 3γ3)/5 = 2.58, β = (γ1 − 2γ )/(γ1 +
2γ ) = 0.15 and finds the corresponding values α = 0.707
and ζ = 1.69.
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