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We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral
periodic modulation of both the potential and decay rate. A spontaneous breaking of spatial inversion
symmetry of a polariton condensate emerges at a critical pumping, and the current direction is
stochastically chosen. We analyze the stability of the current with respect to the fluctuations of the
condensate. A peculiar spatial current domain structure emerges, where the current direction is switched at
the domain walls, and the characteristic domain size and lifetime scale with the pumping power.
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Being weakly interacting composite bosons, exciton-
polaritons undergo Bose-Einstein condensation (BEC)
[1,2] and may exhibit superfluid behavior [3–5]. Its striking
manifestation, persistent, frictionless polariton currents may
be used for information exchange between optical logical
devices [6,7]. Like atomic or molecular counterparts, polar-
iton superfluids also sustain quantized vortices [5,8] and half
vortices [9–11]. Polariton transport free of backscattering
may be as well realized in the linear regime at the edges of
polariton topological insulators [12–14]. In all cases, strong
light-matter coupling plays a crucial role, as it supplements
light cavity photons with a strong nonlinearity and provides
a strong magneto-optical interaction.
Contrary to the cold atom systems, cavity polaritons are

characterized by finite lifetime, limited by the photon escape
from the cavity. Formed as a result of the compensation of this
dissipation by continuous pumping from exciton reservoirs,
the polariton condensates are thus out of thermal equilibrium.
In the case of nonresonant optical or electric pumping, the
quantum coherence of the condensate is formed spontane-
ously. For sufficiently fast polariton thermalization, the
condensate is formed in the single particle ground state in
full analogy with the BEC. However, polaritons with a slow
energy relaxation can choose an excited single-particle state
for macroscopic occupation [15–17]. Such a state is usually
degenerate. Moreover, when single-particle states possess
different lifetimes, the interaction between polaritons can lead
to condensation into specific many-particle states with
spontaneously broken symmetries such as the time-reversal
and parity symmetries [18]. In this weak lasing state, the

system is stabilized by the repulsive polariton-polariton
interactions rather than the reservoir depletion (gain-
saturation nonlinearity). The combined effect of interactions
and gain saturation extends the stability of weak lasing states
to high excitation powers [19]. These states can be easily
manipulated and switched experimentally [20,21].
Polariton condensates are commonly described in the

mean field approximation with non-Hermitian Hamiltonians
accounting for both decay and external pumping. In this
Letter, we consider a lateral periodic complex potential for
polaritons in planar microcavities or microwires similar
to those realized in Refs. [15,22,23]. Its imaginary part,
corresponding to spatially dependent polariton decay rate, is
determined by the spatial modulation of the cavity quality
factor. In turn, the real part of the potential may be realized
with a spatial quantization energy modulation of either the
photonic or excitonic component. Regardless of realization
of this potential, the single-polariton mode with the longest
lifetime turns out to be at the edge of the lowest energy
minigap. Assuming the feed for all Bloch wave modes close
to the bottom of the polariton dispersion being equal, this
mode has the lowest lasing threshold.
In the case of in-phase modulation of the real and

imaginary parts of the potential, a second threshold
emerges due to the repulsive interaction. While below this
threshold, the condensate order parameter period coincides
with the modulation lattice constant, crossing it results in
abrupt period doubling. There are two degenerate double
period condensate states connected by the lattice translation
spontaneous symmetry breaking. In terms of the two mode
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approximation, the transition is described as an admixture
of the ground polariton state having an intermediate life-
time to the macroscopically occupied second band bottom
state having the longest lifetime [22].
What happens if the modulations of the real and imagi-

nary parts of the potential have opposite phases? In this case,
the lowest threshold corresponds to the polariton mode at
the top of the lowest miniband rather than at the bottom
of the second miniband. The repulsive interaction blueshifts
the initial condensate, causing the dynamical admixture
of the second band bottom state. As we show below, there
appears a nontrivial (neither 0 nor π) phase difference
between these two states constituting the condensate, which
manifests itself in a nonzero net polariton current.
It should be noted, that apart from some similarity, the

formation of a spontaneous current is different in origin
from the Kibble-Zurek mechanism of vorticity [24]. The
polariton condensation does not follow the standard
Kibble-Zurek scenario [25,26], and the current does not
appear because of the nonadiabaticity of a transition. While
nonzero current is a general feature of nonlinear Bloch
solutions [27], in this Letter, we show that in the present
case, there is no stationary condensate state without the
flux, and this flux is not quantized.
We solve the Gross-Pitaevskii equation (GPE) for the

condensate wave function taking into account two types of
nonlinearities, stemming from polariton repulsion and
reservoir depletion (ℏ ¼ 1),
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Here, m is the polariton effective mass and α is the
interaction constant. The pumping power W, determined
by the reservoir population, is locally reduced due to its
depletion, which is proportional to the condensate density
averaged over the unit cell with the prefactor η=2. This
nonlinearity can be obtained as a result of the exclusion
of the equation for reservoir density [28]. The averaging
describes washing out the spatial inhomogeneities of the
reservoir density by the exciton diffusion and excludes
unphysical solutions with a periodic modulation of the
reservoir density. We consider a lateral complex periodic
potential UðxÞ for polaritons, shown in Fig. 1(a),
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where n spans all integers.
The Kronig-Penney model [29] for a polariton in such a

potential yields the band structure [Fig. 1(b)], where the
longest (shortest) lifetime characterizes the lowest-band top
(the second-band bottom) state, which we denote as SðAÞ.

In the nearly free particle approximation, the two polariton
modes ΨS ∝ cosðk0xÞ and ΨA ∝ sinðk0xÞ with k0 ¼ π=a
are separated by the energy band gap ε ¼ 2~ε=π and decay
at rates Γ − γ and Γþ γ, respectively, where γ ¼ 2~γ=π.
Assuming slow polariton thermalization and equal feed-

ing of the modes from the reservoir, one should expect the
longest lifetime mode (S) to cross the lasing threshold first
with increasing pumping power. With further growth of the
condensate population, the repulsive interaction blueshifts
the condensate and eventually leads to admixture of the
second band bottom (A) state. We project Eq. (1) onto the
plane wave two-mode basis and search for the solution in
the form Ψ ¼ ψþ expðþik0xÞ þ ψ− expð−ik0xÞ. Assuming
that the envelopes ψ� are smooth on the scale of the lattice
parameter a, we neglect second spatial derivatives of ψ�
and obtain� ∂
∂t� c

∂
∂xþ

gðsÞ
2

þ iα
2
ð3s ∓ szÞ

�
ψ� ¼ γ þ iε

2
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Here, c ¼ π=ma, gðsÞ ¼ ηs − w with w ¼ W − Γ,
s ¼ ðjψþj2 þ jψ−j2Þ=2, and sz ¼ ðjψþj2 − jψ−j2Þ=2. In
what follows, we first find spatially homogeneous solutions

ψ�ðx; tÞ≡ ψ�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s� sz

p
e−iðΩt�ϕÞ; ð4Þ

with time independent s, sz, the phase shift ϕ, and the
emission frequency Ω (counted from the middle of the gap).
Then, we study their stability with respect to small spatially
nonhomogeneous fluctuations. See the Supplemental
Material [30] for details of the derivations.
The first pair of solutions preserve the parity symmetry

of Eqs. (3), i.e., sz ¼ 0, which corresponds to the con-
densation in the single-particle S state with s ¼ ðwþ γÞ=η
and ϕ ¼ 0, and to the condensation in the A state with

(a)

(b) (c)

FIG. 1. (a) Sketch of the proposal: polariton current of
spontaneously chosen direction flows in a condensate fed by a
symmetric homogenous pumping. (b) Spatial distribution of real
and imaginary parts of the periodic potential UðxÞ and distribu-
tion of the first and second band wave functions at the Brillouin
zone edge. (c) Complex polariton band structure in the Kronig-
Penney model. The decay rate is shown with color. The fastest
(slowest) decay rate characterizes A (S) mode.
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s ¼ ðw − γÞ=η and ϕ ¼ π=2. As expected, the S mode
solution has the lowest threshold pumping power w ¼ −γ.
For the second pair of stationary solutions characterized

by a nonzero sz and nontrivial phase difference ϕ,

sz ¼ −
ε

γ
s tanð2ϕÞ; tanð2ϕÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; ð5Þ

we obtain for the population s and emission frequency Ω,
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The first equation in (6) has two roots for the condensate
population s. However, complemented with restrictions
s > 0 and 0 < gðsÞ < γ, it has two branches of solutions
for pumping powers above the critical point

wc ¼ η
γ2 þ ε2

εα
− γ; ð7Þ

if α=η < ðγ=εÞ − ðε=γÞ and a single branch of solutions
otherwise. These two regimes correspond to subcritical
and supercritical pitchfork bifurcations, respectively [31].
We refer to them as two transitions of types I and II,
respectively, in an analogy to phase transitions of the first
and the second order. Note that the condition 0 < gðsÞ < γ
implies that these solutions correspond to intermediate
condensate populations between populations of the sym-
metric S and antisymmetric A solutions.
The branches of fixed points for both cases are shown in

Fig. 2; sðwÞ shows the normalized condensate population,
while the nonzero population imbalance szðwÞ defines the
polariton current flowing in the condensate j ¼ 2k0sz=m.
For A and S state solutions, shown in red and blue,
respectively, there is no current, and populations are linear
in the pumping power. The nonzero current is a property of
the other pair of branches, plotted in black. The two
solutions have the same population, but the current direc-
tions are opposite. It is important to note that the polariton
density for the current solutions is lower than the maximal
possible density achieved at the unstable state S. This is
characteristic for the weak lasing regime, where the losses
in the polariton system are adjusted to compensate the gain
rather than minimized.
Figure 2 also indicates the stability of the solutions

with respect to homogeneous fluctuations; the unstable
branches are shown with dotted lines. While the A state
is always unstable, the S state solution is stable at s < sc ¼
ðε2 þ γ2Þ=αε, below the critical pumping value wc. The
symmetry breaking solutions, on the contrary, are stable
above the critical pumping in the case of a type II
bifurcation. For a type I with two nontrivial solutions for
sðwÞ, the lower branch is stable, while the upper one is
unstable. The critical point w ¼ wc is thus a pitchfork
bifurcation of a cusp catastrophe. It is supercritical for

type II and subcritical for type I. The latter is accompanied
with a region of tristability below the critical point. It is
limited from below with a saddle-node bifurcation at
w ¼ wf ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γηðγη − εαÞp

=α < wc. The tristability region
corresponds to hysteresis loops between the symmetric S
state solution and the pair of symmetry breaking solutions.
The sign of sz and thus the direction of the polariton current
j is spontaneously chosen by the system once the con-
densate passes the critical point. Its value continuously
grows from zero in the supercritical case and appears
abruptly in the subcritical one. On the way back along a
randomly chosen hysteresis loop, the current abruptly
disappears at the saddle-node bifurcation point w ¼ wc.
To study the stability with respect to inhomogeneous

phase and population fluctuations, we calculate the elemen-
tary excitation spectra. In the standard way, we linearize
Eq. (3) with respect to a plane wave perturbation

δψ�ðx; tÞ ¼ e−iΩtð u�eikxþλt þ v��e
−ikxþλ�tÞ ð8Þ

of the spatially uniform solutions described above.
The dispersion of the real and imaginary parts of the

Lyapunov exponent λðkÞ for the nonzero current solution is
plotted in Fig. 3 for different regimes. Here, we consider
uniformly stable solutions, characterized by three modes
with Reλð0Þ < 0 and one Goldstone mode with λð0Þ ¼ 0.
The Goldstone mode appears due to the irrelevance to the
global shift of the total phase of the condensate Φ.

(a)

(c) (d)

(b)

FIG. 2. (a),(b) Condensate population dependence on the
pumping power. (c),(d) Imbalance of populations sz defining
the value of the net polariton current. Uniformly stable (unstable)
stationary solutions are plotted with solid (dotted) lines. Blue and
red lines correspond to symmetry conserving condensates at S
and A polariton modes. The two sets of parameters correspond to
the presence (type I) and absence (type II) of a tristability region
between the S state solution and the pair of symmetry breaking
solutions. In the former case, two hysteresis loops emerge.
The lower two plots are zoomed to the pitchfork and saddle-
node bifurcation points wc and wf. Inset: phase transition type
depending on α=η and γ=ε.
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The short wavelength limit analysis provides an impor-
tant condition of the applicability of the two-mode approxi-
mation (3). Depending on the parameters, there are three
regimes, illustrated by Fig. 3(a). For a given nonlinearity
relation α=η, low values of ε=γ correspond to the instability
of the symmetry breaking condensate in the short wave-
length limit. In this domain, the system should exhibit
either period doubling bifurcations [22] or strongly chaotic
behavior. There is an intermediate regime where the
spontaneous current condensate is stable in a certain range
of pumping powers. However, in the most realistic case of
a large ε=γ, the spontaneous current solutions are stable
with respect to short wavelength fluctuations and are well
described by Eqs. (3). Note that for the long wavelength
fluctuations, the condition ka ≪ 1 is well satisfied. The
two parameters defining the short wavelength stability,
α=η and ε=γ depend on the system design: the interaction
nonlinearity α may be controlled by polariton lateral
confinement (etched microcavity width), while ε and γ
are independently tunable through periodic modulation of
the cavity photonic mode energy and broadening.
In the case that the condensate is stable with respect

to short wavelength fluctuations, there is still a region of
positive Lyapunov exponents, as it is seen from Fig. 3(d). We

note that this result does not follow from the Mermin-
Wagner theorem [32], although the latter also forbids
long-range order in 1D. A condensate in a long enough
microcavity chain thus falls apart and is expected to trans-
form into a polariton current domain structure. The charac-
teristic domain size ld ∼ c=w, deduced from the extremum
position of the excitation spectrum imaginary part, as well as
its characteristic lifetime τd ∼ 1=w, obtained as the inverse
extremum value, scales as the inverse occupation number of
the condensate. Hence, the domain wall characteristic speed
vd ∼ ld=τd ≈ c is independent on the pumping power.
On the other hand, a finite system with periodic boundary

conditions, such as a microcavity ring chain, may support a
global bifurcation towards a polariton condensate with a
spontaneously chosen and persistent circular current. This is
possible in the case of short wavelength stability in a range of
low pumping powers. The upper boundary of this range is
determined by the cutoff fluctuation wave vector kc defined
by ReλðkcÞ ¼ 0 [see red curve in Fig. 3(d)]. The persistent
current is possible in the ring with radius R < k−1c . We note

(a) (b)

(c) (d)

FIG. 3. (a) Stability diagram. Type I and II transitions are
shown with green and blue colors, respectively. Regimes of
current stability with respect to short wavelength fluctuations are
shown with hatching: the blue double hatched area corresponds
to the unstable regime; the red single hatched area covers the
parameter space where the current is stable in a range of pumping
powers; the area free of hatching corresponds to the stable current
regime. (b)–(d) The Lyapunov spectra of condensate current
solutions. Solid and dashed lines show the real and imaginary
parts, respectively. Parameters correspond to the black dots in the
panel (a). The pumping power is slightly above the critical point.

(a)

(c) (d)

(b)

FIG. 4. (a), (b) Numerical simulation in the two-mode approxi-
mation. (a) Absolute value of the spatially averaged current vs
pumping power. The system finite size defines the instability onset
point. Parameters correspond to the type II transition with the finite
system size set by −c ≤ xγ ≤ c. (b) Spatial and temporal depend-
ence of the polariton current in the unstable regime (for w ¼ 2.1γ):
domain structure emerges in an initially homogeneous condensate.
(c),(d) Full numerical simulation of GPE with a periodic complex
potential. (c) Condensate dispersion demonstrating spatial asym-
metry. The intensity has been broadened in energy and momentum
for visualization. Circles denote the bare dispersion, quantized by
the finite system size. Parameters: w ¼ γ, −a ≤ x ≤ a. (d) Spatial
and temporal dependence of local phase gradient in the unstable
regime (given by a larger system size −80a ≤ x ≤ 80a), with
chaotic evolution of domain structure.
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that this mechanism of formation of stable polariton currents
in modulated polariton rings is different to that in unmodu-
lated polariton rings, in which high angular momentum
states were shown to be unstable [33]. Here, the circular
polariton current is formed spontaneously and is not
inherited from an optical pump.
Equations (3) can be solved numerically, by propagating

in time from an initial random noisy state. The results
of this numerics for the type-II transition are shown in
Fig. 4(a). A stable current is formed spontaneously from the
initial noise when the pump intensity is below the critical
value set by the finite system size. Above the critical pump
intensity, the system breaks up forming oscillating domains
[see Fig. 4(b)]. For very large pump intensities, a chaotic
state forms with strong fluctuations in the spatially aver-
aged current.
The spontaneous currents can also be obtained by a

direct numerical solution of the original GPE (1), without
the two-mode approximation (3). Here, we add a Langevin
noise term [17], which serves both as an initial seed for the
condensate and a test of its stability to fluctuations. Using
type II parameters, we find preferential condensation in the
k ¼ þk0 state [see Fig. 4(c)]. This state is further charac-
terized by a relatively small and spatially uniform phase
gradient (not shown), which is stable in time despite the
presence of noise. Repeating the calculation revealed
random selection of the �k0 states, with equal probability.
Finally, by increasing the system size, the spontaneous
currents become unstable leading to the formation of
chaotic domains, characterized by different phase gra-
dients, which evolve spatiotemporally.
In summary, we considered polariton condensation in

microcavities with a potential and decay rate periodically
modulated in space. Our analysis suggests that such systems
undergo a spontaneous symmetry breaking and the forma-
tion of polariton currents. We identify the critical conditions
for this effect to emerge and produce the phase diagram
showing type I and type II transition boundaries. For large
systems, oscillating domains of counterpropagating currents
are predicted. For systems smaller than the characteristic
domain size, e.g., polariton rings, the spontaneously formed
currents are stable and survive in the presence of spatio-
temporal noise. See the Supplemental Material [34] for
discussion of the experimental realization of the effect.
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